A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Liu, W.

Paper Title Page
MOPP046 Collimation Optimizations, Capture Efficiency, and Primary-Beam Power Loss in the ILC Positron Source 649
 
  • F. Zhou, Y. Nosochkov, J. Sheppard
    SLAC, Menlo Park, California
  • W. Liu
    ANL, Argonne, Illinois
 
  The ILC positron beam generated from a thin Ti target has a wide energy spread and large transverse divergence. With the collection optics immediately downstream of the target and pre-acceleration to 125 MeV, the collected positron beam still has a long tail of positrons with low energies and large transverse divergence, which will be lost in the rest of the ILC positron source beamline. A collimation system is proposed and optimized for the case of a shielded target with quarter-wave transformation collection optics so that the power loss in the magnets and RF structures is effectively controlled within the acceptable level and in the damping ring (DR) within 640 W, assuming 3× 1010 of the captured positrons per bunch in the DR. In this case, the capture efficiency and DR injection efficiency are 13% and 99.8%, respectively. The lower capture efficiency is expected to result in higher injection efficiency and therefore, a lower power loss in the DR. The capture efficiency for the cases of a shielded target with flux concentrator and 5-T immersed target with flux concentrator is 20% and 30%, respectively, with the collimation system.  
WEPP148 Generation of High Gradient Wakefields in Dielectric Loaded Structures 2835
 
  • M. E. Conde, S. P. Antipov, F. J. Franchini, W. Gai, F. Gao, R. Konecny, W. Liu, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
 
  Dielectric loaded wakefield structures have potential to be used as high gradient accelerator components. Using the high current drive beam at the Argonne Wakefield Accelerator Facility, we employed cylindrical dielectric loaded wakefield structures to generate accelerating fields of up to 100 MV/m. Short electron bunches (13 ps FWHM) of up to 86 nC are used to drive these fields, either as single bunches or as bunch trains. These recently tested standing-wave structures have a field probe near the outer edge of the dielectric to sample the RF fields generated by the electron bunches. Monitoring of these high intensity RF fields serves to verify the absence of electric breakdown.  
WEOBG03 The Design of the Positron Source for the International Linear Collider 1915
 
  • J. A. Clarke, O. B. Malyshev, D. J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • I. R. Bailey, J. B. Dainton, K. M. Hock, L. J. Jenner, L. I. Malysheva, L. Zang
    Liverpool University, Science Faculty, Liverpool
  • E. Baynham, T. W. Bradshaw, A. J. Brummitt, F. S. Carr, A. J. Lintern, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • V. Bharadwaj, J. Sheppard
    SLAC, Menlo Park, California
  • A. Bungau
    UMAN, Manchester
  • N. A. Collomb
    STFC/DL, Daresbury, Warrington, Cheshire
  • R. Dollan
    Humboldt Universität zu Berlin, Berlin
  • W. Gai, Y. Ivanyushenkov, W. Liu
    ANL, Argonne, Illinois
  • J. Gronberg, W. T. Piggott
    LLNL, Livermore, California
  • A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  • S. Hesselbach, G. A. Moortgat-Pick
    Durham University, Durham
  • K. Laihem, S. Riemann, A. Schaelicke, A. Ushakov
    DESY Zeuthen, Zeuthen
  • T. Lohse
    Humboldt University Berlin, Institut für Physik, Berlin
  • A. A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  • N. C. Ryder
    University of Bristol, Bristol
 
  The high luminosity requirements and the option of a polarized positron beam present a great challenge for the positron source of a future linear collider. This paper provides a comprehensive overview of the latest proposed design for the baseline positron source of the International Linear Collider. We report on recent progress and results concerning the main components of the source: including the undulator, collimators, capture optics, and target.  
slides icon Slides