A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Jowett, J. M.

Paper Title Page
WEOAG02 Measurements of Heavy Ion Beam Losses from Collimation 1906
 
  • R. Bruce, R. W. Assmann, G. Bellodi, C. Bracco, H.-H. Braun, S. S. Gilardoni, E. B. Holzer, J. M. Jowett, S. Redaelli, Th. Weiler, C. Zamantzas
    CERN, Geneva
 
  The collimation efficiency for Pb82+ ion beams in the LHC is predicted to be much lower than for protons. Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements of loss patterns caused by a prototype LHC collimator in the CERN SPS. The loss maps show a qualitative difference between Pb82+ ions and protons, with the maximum loss rate observed at different places in the ring. This behaviour was predicted by simulations and provides a valuable benchmark of the simulations done for the LHC.  
slides icon Slides  
WEPP006 Effects of Ultraperipheral Nuclear Collisions in the LHC and their Alleviation 2533
 
  • R. Bruce, S. S. Gilardoni, J. M. Jowett
    CERN, Geneva
 
  Electromagnetic interactions between colliding heavy ions at the LHC are the sources of specific beam loss mechanisms that may quench superconducting magnets. We propose a simple yet efficient strategy to alleviate the effect of localized losses from bound-free pair production by spreading them out in several magnets by means of orbit bumps. We also consider the consequences of neutron emission by electromagnetic dissociation and show through simulations that ions modified by this process will be intercepted by the collimation system, without further modifications.  
WEPP052 A Storage Ring Based Option for the LHeC 2638
 
  • F. J. Willeke
    BNL, Upton, New York
  • F. Bordry, H.-H. Braun, O. S. Brüning, H. Burkhardt, J. M. Jowett, T. P.R. Linnecar, K. H. Mess, S. Myers, J. A. Osborne, F. Zimmermann
    CERN, Geneva
  • S. Chattopadhyay
    Cockcroft Institute, Warrington, Cheshire
  • J. B. Dainton, M. Klein
    Liverpool University, Science Faculty, Liverpool
  • B. J. Holzer
    DESY, Hamburg
 
  The LHeC aims at the generation of Hadron-Lepton collisions with center of mass energies in the TeV scale and luminosities of the order of 1033 cm-2 sec-1 by taking advantage of the existing LHC 7 TeV proton ring and adding a high energy electron accelerator. This paper presents technical considerations and potential parameter choices for such a machine and outlines some of the challenges arising when an electron storage ring based option, constructed within the existing infrastructure of the LHC, is chosen.  
MOPC131 Ions for LHC: Towards Completion of the Injector Chain 376
 
  • D. Manglunki, M. Albert, M.-E. Angoletta, G. Arduini, P. Baudrenghien, G. Bellodi, P. Belochitskii, E. Benedetto, T. Bohl, C. Carli, E. Carlier, M. Chanel, H. Damerau, S. S. Gilardoni, S. Hancock, D. Jacquet, J. M. Jowett, V. Kain, D. Kuchler, M. Martini, S. Maury, E. Métral, L. Normann, G. Papotti, S. Pasinelli, M. Schokker, R. Scrivens, G. Tranquille, J. L. Vallet, B. Vandorpe, U. Wehrle, J. Wenninger
    CERN, Geneva
 
  The CERN LHC experimental programme includes heavy ion physics with collisions between two counter-rotating Pb82+ ion beams at a momentum of 2.76 TeV/c/nucleon per beam and luminosities as high as 1·1027 cm-2 s-1. To achieve the beam parameters required for this operation the ion accelerator chain has undergone substantial modifications. Commissioning with beam of the various elements of this chain started in 2005 and in 2007 it was the turn of the final stage, the Super-Proton-Synchrotron (SPS) following extensive changes to the low-level RF hardware. The major limitations of this mode of operation of the SPS (space charge, intra-beam scattering) are presented, together with the performance reached so far. The status of the pre-injector performance will also be reviewed together with a description of the steps required to reach nominal performance.  
WEOAG01 Prospects for a Large Hadron Electron Collider (LHeC) at the LHC 1903
 
  • M. Klein
    Liverpool University, Science Faculty, Liverpool
  • H. Aksakal
    N. U, Nigde
  • F. Bordry, H.-H. Braun, O. S. Brüning, H. Burkhardt, R. Garoby, J. M. Jowett, T. P.R. Linnecar, K. H. Mess, J. A. Osborne, L. Rinolfi, D. Schulte, R. Tomas, J. Tuckmantel, F. Zimmermann, A. de Roeck
    CERN, Geneva
  • S. Chattopadhyay, J. B. Dainton
    Cockcroft Institute, Warrington, Cheshire
  • A. K. Ciftci
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • A. Eide
    EPFL, Lausanne
  • B. J. Holzer
    DESY, Hamburg
  • P. Newman
    Birmingham University, Birmingham
  • E. Perez
    CEA, Gif-sur-Yvette
  • S. Sultansoy
    TOBB ETU, Ankara
  • A. Vivoli
    LAL, Orsay
  • F. J. Willeke
    BNL, Upton, New York
 
  The LHeC collides a lepton beam with one of the intense, LHC, hadron beams. It achieves both e± interactions with quarks at the terascale, at eq masses in excess of 1 TeV, with a luminosity of about 1033 cm-2 s-1, and it also enables a sub-femtoscopic probe of hadronic matter at unprecedented chromodynamic energy density, at Bjorken-x values down to 10-6 in the deep inelastic scattering domain. The LHeC combines the LHC infrastructure with recent advances in radio-frequency, in linear acceleration and in other associated technologies, to enable two proposals for TeV ep collisions: a "ring-ring" option in which 7 TeV protons (and ions) collide with about 70 GeV electrons/positrons in a storage ring in the LHC tunnel and a "linac-ring" option based on an independent superconducting linear accelerator enabling single-pass collisions of electrons and positrons of up to about 140 GeV with an LHC hadron beam. Both options will be presented and compared. Steps are outlined for completing a Conceptual Design Review of the accelerator complex, beam delivery, luminosity, physics and implications for experiment, following declared support by ECFA and by CERN for a CDR.  
slides icon Slides