A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hosoyama, K.

Paper Title Page
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
MOPD014 First Test Results of ILC/STF Cryogenic System at KEK 472
 
  • S. Kaneda, T. Ichitani
    Taiyo Nippon Sanso Corporation, Kawasaki-city Kanagawa Pref.
  • K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, K. Nakanishi
    KEK, Ibaraki
  • T. Kanekiyo
    Hitachi Technologies and Services Co., Ltd., Kandatsu, Tsuchiura
  • M. Noguchi
    Mayekawa MFG. Co., Ltd., Moriya
  • S. Sakuma, K. Suzuki
    Taiyo Nippon Sanso Higashikanto Corporation, Hitachi-city, Ibaraki-Pref
  • J. Yoshida
    Hitachi Plant Technologies, Ltd., Tokyo
 
  The STF (Superconducting RF Test Facility) cryogenic system, of which capacity is 30W at 2.0K, has been constructed and commissioned for testing STF cryomodule. In the first operation phase, the STF cryogenic system was successfully cooled down to maintain a superconducting RF cavity at the working temperature of 2.0K. Presented in this session will be the results of the first operation of the cryogenic system and the future collaboration plan among KEK and Japanese cryogenic industrial members.  
MOPP029 The First Measurement of Low-loss 9-cell Cavity in a Cryomodule at STF 610
 
  • T. Saeki, M. Akemoto, S. Fukuda, F. Furuta, K. Hara, Y. Higashi, T. Higo, K. Hosoyama, H. Inoue, A. Kabe, H. Katagiri, S. Kazakov, Y. Kojima, H. Matsumoto, T. Matsumoto, S. Michizono, T. Miura, Y. Morozumi, H. Nakai, K. Nakanishi, N. Ohuchi, K. Saito, M. Satoh, T. Takenaka, K. Tsuchiya, H. Yamaoka, Y. Yano
    KEK, Ibaraki
  • T. Kanekiyo
    Hitachi Technologies and Services Co., Ltd., Kandatsu, Tsuchiura
  • J. Y. Zhai
    IHEP Beijing, Beijing
 
  We are constructing Superconducting RF Test Facility (STF) at KEK for the R&D of International Linear Collider (ILC) accelerator. In the beginning of year 2008, we installed one high-gradient Low-Loss (LL) type 9-cell cavity into a cryomodule at STF, where we assembled an input coupler and peripherals with the cavity in a clean room, and the assembled cavity packages were dressed with thermal shields and installed into a cryomodule. At the room-temperature, we performed the processing of capacitive-coupling input-coupler upto the RF power of 250 kW. At the temperature of 4 K, we measured the loaded Q of the cavity and the tuner was tested. At the temperature of 2 K, high-power RF was supplied from a klystron to the cavity and the performance of the cavity packeage was tested. This article presents the results of the first test of the Low-Loss (LL) 9-cell cavity package at 2 K in a cryomodule.  
MOPP144 The First Cool-down Tests of the 6 Meter-Long-Cryomodules for Superconducting RF Test Facility (STF) at KEK 892
 
  • N. Ohuchi, F. Furuta, K. Hara, H. Hayano, N. Higashi, Y. Higashi, H. Hisamatsu, K. Hosoyama, E. Kako, Y. Kojima, M. Masuzawa, H. Matsumoto, H. Nakai, S. Noguchi, T. Saeki, K. Saito, T. Shishido, A. Terashima, N. Toge, K. Tsuchiya, K. Yokoya
    KEK, Ibaraki
  • M. H. Tsai
    NSRRC, Hsinchu
  • Q. J. Xu
    IHEP Beijing, Beijing
 
  KEK is presently constructing the Superconducting RF Test Facility (STF) as the center of the ILC-R&D in Asia from 2005. In this project, KEK aims to get the manufacturing and operational experiences of the RF cavity and cryomodule toward the ILC, and two cryomodules have been developed. These cryomodules are 6 meter long and have 4 nine-cell cavities in each cryostat. The basic cross section designs of the cryomodules are almost same as the design of TESLA type-III, however, each cryostat has the different type of cavities, TESLA type and Low-Loss type. The tests for the cryomodules are planed to be performed at three steps. In the first test, measurements of the cryogenic performances of these cryomodules are the main objective. One nine-cell cavity was assembled in each cryostat and the cool-down of the two cryomodules was performed. In the following tests, the four nine-cell cavities will be assembled in each cryostat as the complete integration and the beam test will be performed. In this paper, we will report the design of the cryomodules and the cryogenic performances at the first cold test.  
WEPD020 Stability of Superconducting Wire in Magnetic Field 2449
 
  • K. Ruwali
    GUAS/AS, Ibaraki
  • K. Hosoyama, K. Nakanishi
    KEK, Ibaraki
  • Y. Teramoto, A. Yamanaka
    Toyobo Research Institute, Shiga
 
  Main cause of premature quench in superconducting magnet is the heat generated due to superconducting wire motion. The wire motion occurs where electromagnetic force to conductors exceeds frictional force on surfaces of the conductors. Hence, frictional properties of the conductors and winding structures are important parameters for characterizing stability of the superconducting windings. An experimental setup was prepared to detect wire movement by observing spike in voltage of the superconducting sample wire. A detailed study was carried out in order to study superconducting wire motion under different experimental conditions such as varying applied load to specimen wire, back up field, varying the interface of superconductor and base material. The base materials used are polyimide film and Dyneema. The Dyneema has low frictional coefficient and negative thermal expansion. In the case of Dyneema, it is found that amplitude of voltage generated due to wire motion reduces and also relatively smooth motion of wire is observed. These effects are attributed to the low frictional coefficient. The experimental observation will be discussed in detail.  
THXM02 Development of the KEK-B Superconducting Crab Cavity 2927
 
  • K. Hosoyama, K. Akai, K. Ebihara, T. Furuya, K. Hara, T. Honma, A. Kabe, Y. Kojima, S. Mitsunobu, Y. Morita, H. Nakai, K. Nakanishi, M. Ono, Y. Yamamoto
    KEK, Ibaraki
  • H. Hara, K. Okubo, K. Sennyu, T. Yanagisawa
    MHI, Kobe
 
  The development of the KEK-B superconducting crab cavity, including the design, production, tests and latest parameter performances should be described in this talk.  
slides icon Slides