A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Dobbing, J. A.

Paper Title Page
WEPC057 Preparation for Top-up Operation at Diamond 2121
 
  • R. P. Walker, P. T. Bonner, F. Burge, Y. S. Chernousko, C. Christou, J. A. Dobbing, M. T. Heron, V. C. Kempson, I. P.S. Martin, G. Rehm, R. J. Rushton, S. J. Singleton, M. C. Wilson
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
 
  We report on progress towards top-up operation of Diamond. We describe the extensive safety assessment that has carried out, including the measurements and simulations to assess the potential radiation doses in the case of poor injection efficiency or a top-up "accident", and the various levels of safety measures - procedures, software limits and personnel safety system interlocks - that have been implemented. We describe the top-up control algorithm, the technique used to maintain a given arbitrary filling pattern and the performance in practise. The work carried out to reduce the effect of the injection kickers on the stored beam is described, and the effect of the residual disturbance on user operation is discussed. The modifications to the timing system to provide hardware and software gating signals, and experience with the use of these, are also described.  
WEPC070 Further Optimisation of the Diamond Light Source Injector 2157
 
  • C. Christou, J. A. Dobbing, V. C. Kempson, A. F.D. Morgan, B. Singh, S. J. Singleton
    Diamond, Oxfordshire
 
  The Diamond Light Source injector consists of a 100MeV linac and a 3GeV full-energy booster, and has been providing beam to the storage ring since September 2006. System optimisation has continued throughout the first year of user operation at Diamond. Beam losses on injection into both the booster and storage ring have been minimised by optimisation of operating parameters and the stabilisation of injection elements, particularly the elimination of a linac energy beat. High level software has been developed to monitor turn-by-turn BPM data, allowing booster chromaticity to be measured. The same software generates an automatic log of storage ring frequency spectra on injection, enabling the parasitic measurement of storage ring tune, and can be used to provide information on storage ring impedance and chromaticity. Further optimisation of single bunch injection has been carried out in preparation for top-up operation, and top-up capability has been extended to provide a single bunch filling mode for the storage ring. Injection into the booster at low energy has been demonstrated, providing a mode of operation for the injection system in the event of a linac klystron failure.  
THPC118 Performance and Future Developments of the Diamond Fast Orbit Feedback System 3257
 
  • M. T. Heron, M. G. Abbott, J. A. Dobbing, G. Rehm, J. Rowland, I. Uzun
    Diamond, Oxfordshire
  • S. Duncan
    University of Oxford, Oxford
 
  The electron beam in the Diamond Synchrotron Light Source is stabilised in two planes using a Global Beam Orbit Feedback system. This feedback system takes the beam position from 168 Libera electron beam position monitors, for both planes, and calculates offsets to 336 corrector power supplies at a rate ~10kHz. The design and implementation will be summarised, and system performance and first operational experience presented. Current and potential future developments of the system will be considered.