A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cavalier, S.

Paper Title Page
MOPP005 The 2 mrad Crossing Angle Scheme for the International Linear Collider 556
 
  • R. Appleby
    UMAN, Manchester
  • D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade, S. Cavalier, G. Le Meur, F. Touze
    LAL, Orsay
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
 
  The present baseline configuration of the ILC has a 14 mrad crossing angle between the beams at the interaction point. This allows easier extraction of the beams after collisions, but imposes on the other hand more constraints on the control of the beams prior to colliding them. Moreover, some limitations to physics capabilities arise, in particular because of the degraded very forward electromagnetic detector hermeticity and because calibration procedures for (gaseous) tracking detectors become more complex. To mitigate these problems, alternative configurations with very small crossing angles are studied. A new version of the 2 mrad layout was designed last year, based on simpler concepts and assumptions. The emphasis of this new scheme was to satisfy specifications with as few and feasible magnets as possible, in order to reduce costs. Recent progress designing several of the magnets involved and the particular vacuum chamber needed in the shared part of the beam line is reported.  
WEPP004 Overall Optics Solutions for Very High Beta in Atlas 2527
 
  • S. M. White, H. Burkhardt, P. M. Puzo
    CERN, Geneva
  • S. Cavalier, M. Heller
    LAL, Orsay
 
  An insertion optics with a beta-star of at least 2600 m has been requested by the ATLAS experiment at the LHC. This is very far from the standard LHC physics optics and implies a significant reduction in the phase advance from this insertion corresponding to about half a unit in tune. We describe several alternatives how this could be integrated in overall LHC optics solutions with the possibility to inject, ramp and un-squeeze to the required very high beta.  
WEPP078 PHIL: a Test Beam line at LAL 2698
 
  • R. Roux, M. Bernard, G. Bienvenu, S. Cavalier, M. Jore, B. Leblond, B. M. Mercier, B. Mouton, C. P. Prevost, V. Variola
    LAL, Orsay
 
  For 2004, in the framework of a European contract, LAL is in charge of the construction of one photo-injector for the drive beam linac of the CLIC Test Facility 3 at CERN. This contract together with national funds allowed LAL to build a test accelerator with the same photo-injector as for CTF3. The goal is to undergo experiments on advanced RF guns but a part of the beam time will be also shared with users of the electron beam. So far, the construction of this accelerator at LAL was very much delayed because of the legal obligation to upgrade the radiation shielding in agreement with the actual radiation safety thresholds. The required civil engineering is now finished and the installation of the components is under way. We will first present a design of the accelerator and few dynamic simulation results. Finally we will give a status of the accelerator construction up to date.