A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Burrows, P.

Paper Title Page
MOPP027 Placet Based Start-to-end Simulations of the ILC with Intra-train Fast Feedback System 604
 
  • J. Resta-López, P. Burrows, A. F. Hartin
    JAI, Oxford
  • A. Latina, D. Schulte
    CERN, Geneva
 
  Integrated simulations are important to assess the reliability of the luminosity performance of the future linear colliders. In this paper we present multi-bunch tracking simulation results for the International Linear Collider (ILC) from the start of the LINAC to the interaction point. The tracking along the LINAC and the beam delivery system is done using the code Placet. This code allows us to introduce cavity wakefield effects, element misalignment errors and ground motion. Static beam based alignment of the LINAC are also considered. The luminosity and beam-beam parameters are calculated using the code Guinea-Pig. In the framework of the Feedback On Nano-second Timescales (FONT) project, we describe and simulate an updated fast intra-train feedback system in order to correct for luminosity degradation mainly due to high frequency ground motion.  
MOPP031 Challenges and Concepts for Design of an Interaction Region with Push-pull Arrangement of Detectors - an Interface Document 616
 
  • A. Seryi, T. W. Markiewicz, M. Oriunno, M. K. Sullivan
    SLAC, Menlo Park, California
  • D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • B. Ashmanskas, V. R. Kuchler, N. V. Mokhov
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • A. Enomoto, Y. Sugimoto, T. Tauchi, K. Tsuchiya
    KEK, Ibaraki
  • A. Herve, J. A. Osborne
    CERN, Geneva
  • A. A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Sanuki
    Tohoku University, School of Scinece, Sendai
  • J. Weisend
    NSF, Arlington
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  Two experimental detectors working in a push-pull mode has been considered for the Interaction Region of the International Linear Collider [1]. The push-pull mode of operation sets specific requirements and challenges for many systems of detector and machine, in particular for the IR magnets, for the cryogenics system, for alignment system, for beamline shielding, for detector design and overall integration, and so on. These challenges and the identified conceptual solutions discussed in the paper intend to form a draft of the Interface Document which will be developed further in the nearest future. The authors of the present paper include the organizers and conveners of working groups of the workshop on engineering design of interaction region IRENG07 [2], the leaders of the IR Integration within Global Design Effort Beam Delivery System, and the representatives from each detector concept submitting the Letters Of Intent.  
TUPC033 IP BPM Position Error at CLIC due to Secondary Emission from Beam-beam Backgrounds 1122
 
  • A. F. Hartin, R. Apsimon, P. Burrows, C. I. Clarke, C. Perry, C. Swinson
    OXFORDphysics, Oxford, Oxon
  • G. B. Christian
    ATOMKI, Debrecen
  • B. Constance, H. Dabiri Khah
    JAI, Oxford
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  Beam-beam background impacts on the IP BPM are studied for the CLIC machine. The large number of coherent pairs ( 1.8×108 charges per BPM strip per bunch crossing) for the CLIC-G default parameter set, potentially leads to a large secondary emission in the BPM strips. Detailed GuineaPig++ and Geant studies reveal, however, that the coherent pairs travel down the extraction line without significant secondary showering. Geant studies of the CLIC incoherent pairs show a flux of secondary emission two orders of magnitude less than that expected for the ILC 1 TeV high luminosity scheme. Since previous studies showed that FONT IP BPM signal distortion for the ILC was of no concern, then it can also be neglected at CLIC.  
THPC114 Design and Performance of a Prototype Digital Feedback System for the International Linear Collider Interaction Point 3245
 
  • P. Burrows, B. Constance, H. Dabiri Khah, J. Resta-López
    JAI, Oxford
  • R. Apsimon, P. Burrows, C. I. Clarke, A. F. Hartin, C. Perry, C. Swinson
    OXFORDphysics, Oxford, Oxon
  • G. B. Christian
    ATOMKI, Debrecen
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  We present the design and preliminary results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a base latency of approximately 140 ns, increasing to approximately 148 ns with the inclusion of real-time charge normalisation.  
THPC133 Layout and Simulations of the FONT System at ATF2 3300
 
  • J. Resta-López, P. Burrows
    JAI, Oxford
 
  We describe the adaptation of a Feedback On Nano-second Timescales (FONT) system for the final focus test beam line ATF2 at KEK. This system is located in the ATF2 extraction line, and is mainly conceived for cancellation of transverse jitter positions originated in the damping ring and by the extraction kickers. This jitter correction is performed by means of a combination of feed-forward (FF) and fast-feedback (FB) beam stabilisation. We define optimal positions for the kicker and BPM pairs of the FONT FF/FB system, and estimate the required kicker performance and BPM resolutions. Moreover simulation results are presented.  
THPC114 Design and Performance of a Prototype Digital Feedback System for the International Linear Collider Interaction Point 3245
 
  • P. Burrows, B. Constance, H. Dabiri Khah, J. Resta-López
    JAI, Oxford
  • R. Apsimon, P. Burrows, C. I. Clarke, A. F. Hartin, C. Perry, C. Swinson
    OXFORDphysics, Oxford, Oxon
  • G. B. Christian
    ATOMKI, Debrecen
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  We present the design and preliminary results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a base latency of approximately 140 ns, increasing to approximately 148 ns with the inclusion of real-time charge normalisation.