

Femtosecond resolution bunch profile diagnostics

S.P. Jamison

ASTeC CCLRC Daresbury Laboratory, UK

Femtosecond longitudinal diagnostics

Radiative Spectral Techniques

- CTR, CDR, CSR spectral characterisation
- CTR, CDR autocorrelation
- Smith Purcell

Electro-optic Techniques

- Scanning/Sampling
- Temporal decoding
- Spectral decoding
- Spatial encoding

Direct Particle Techniques

- RF zero-phasing
- Transverse deflecting cavities
- Optical replicas

- Transfer function (radiator to detector)?
- Spectral Phase???

Field at Source

Spectrum of field dependent on spatial position: $\delta t \sim 2R/c\gamma$

Ultrafast time resolution needs close proximity to bunch (equally true of CDR, Smith-Purcell, Electro-optic etc)

Field at Source

More than an order of magnitude in frequency / wavelength

Short wavelengths contain the fast structure information

long wavelengths needed for bunch reconstruction

diffraction grating spectrometer... (CTR at FLASH)

scanning spectral measurement

single-shot spectrograph

H. Delsim-Hashemi et al. FALS'06, EPAC'06

Michelson-Morley interferometer... (CTR at SLAC/FFTB)

Smith-Purcell radiation Grating structure in beamline both radiator, and spectral dispersive element

- Non-invasive method
- Compact & robust experimental equipment
- Relatively inexpensive and simple setup.

Multi-element detector for S-P radiation

See also Korbly et al. Phys. Rev. ST; 9 (2006) 22802

Kramers-Kronig Phase Reconstruction...

Kramers-Kronig Phase Reconstruction...

An example from APS...

Electro-optic Techniques

Refractive index α Coulomb Field

Electro-optic Techniques....

Shifting Coulomb spectrum to optical region
 CR creating an optical "replica" of Coulomb field

Coulomb spectrum shifted to optical region...

Far-infrared (CTR etc)

- $\delta\lambda/\lambda \sim 1$
- λ ~ 50 µm 1000 µm (missing DC component)
- "single-cycle" pulse

Optical "replica" of Coulomb field

- $\delta\lambda/\lambda \sim 0.05$
- λ ~ 800 nm
- standard optical pulse
- Optical propagation easy [but not always! (fibres)]

gained

• Narrower bandwidth : eases windows problems, absorption, etc

- Ultrafast optical time-domain detection a standard technology
- Single-shot optical spectral measurement trivial
- DC component converted to optical region...it is detected

lost

- Conversion process may need calibration...
 (important for sub 300fs FWHM bunches)
- Cost... (may change with fibre lasers)

Encoding Time Resolution... material response, $R(\omega)$

Decoding methods...

An example... Temporal decoding

- Optical probe chirped to ~15 ps
- Samples field at single point (in beamline)
- Probe intensity profile measured (longitudinal to transverse mapping)

SH crystal

Temporal decoding at FLASH

- situated at 140m point on TTF, at "EOS" station (also used for spectral decoding EO and scanning delay EO)
- beam energy 450 MeV
- adjacent to LOLA transverse deflection cavity

Temporal decoding at FLASH

Electro-optic measurements of CTR

RF zero phasing

screen transverse profile

- Introduce energy chirp to beam
- Measure energy spread
- \Rightarrow infer initial bunch profile

RF-zero phasing

time resolution dependent on

- gradient of energy gain
- dispersion of spectrometer
- initial energy spread

what about bunches with an initial energy – z correlation?

complicated Energy-z correlation may dealt with by tomography (e.g. Loos, NIMA **557** 309 (2006)

Example of zero-phasing profile from DUV-FEL

Time resolution of 8 fs !

Graves et al. PAC'01

Transverse deflecting cavities

- Resolved time structure when: $\Delta y(z) \ge \sigma_v$
- Diagnostic capabilities linked to beam optics

Transverse deflecting cavities...

"Lola" cavities from SLAC... (from 1960's)

Deflection independent of transverse position within cavity

Lola at FLASH

Lola at FLASH

Only resolve temporal structure streaked greater than transverse profile

- maximum streak at screen
 ~ 72 fs / mm
- beam size at screen
 ~ 200 μm

Time resolution ~ 15 fs !!!

Can spatially image beam in orthogonal axis

 \Rightarrow slice emittance, energy slice, z-y correlation, ...

Hüning et al. FEL'05 Röhrs et al. FEL'05

Bench-marking of longitudinal diagnostics

- EO Spatial Encoding (TEO)
- EO Temporal Decoding + Spectral Decoding
- Spectral measurements of CTR and CDR
- Lola transverse deflecting cavity

Comparison of EO and LOLA signals

EO (temporal decoding)

2

1.5

1

0.5

0

-2

High resolution Lola

Berden et al. EPAC'06 TUPCH026

Comparison of EO and LOLA signals

Berden et al. EPAC'06 TUPCH026

Future diagnostics...

Optical Replica Synthesizer

Concept: Saldin, Schneidmiller, Yurkov: NIM A 539 (2005) 499 **Proposed expt. at FLASH:** Zeimann et al. EPAC'06 TUPCH081

Optical Replica Synthesizer

Experiments at FLASH

(Stockholm University / DESY / Uppsala University)

V. Zeimann et al. EPAC'06 TUPCH081

Optical Replica Synthesizer

Time resolution determined by slippage

5 optical periods slippage between bunch and emitted undulator radiation

Separation of radiation from electrons

off axis orbit in radiator... problems with tilted wave-fronts collection mirror with hole.... diffraction?

Summary...

- Many techniques
- No unique best solution...
- ~10 fs resolution demonstrated

thanks to ...

Giel Berden Jonathan Phillips Allan MacLeod Allan Gillespie George Doucas Victoria Blakemore **Stefan Karsch Bernd Steffen Ernst-Axel Knabbe Bernhard Schmidt** Hossein Delsim-Hashemi **Oliver Grimm** Peter Schmüser **Holger Schlarb** Volker Zeimann

and to everyone whose results I have shown..

complicated Energy-z correlation - tomography

- Set of zero phasing (or similar) measurements
- Numeric inversion to initial energy-time correlation

Tomographic measurements from DUV-FEL (75MeV)

