Overview of FEL injectors Massimo Ferrario INFN - LNF

SASE FEL Electron Beam Requirement: High Brightness $B_n > 10^5 A/m^2$

Bunch compressors RF & magnetic

Cathode emittance

Pulse shaping

Emittance compensation

FEL resonance condition implies that e^{-1} slips back in phase w.r.t. photons by λ_r per period λ_u

Amplification occurs over slippage length L_s ==> '*slice*' parameters are important

 $B_n \approx 10^{15} \left[A/m^2 \right]$

Emittance Compensation ==> Controlled Damping of Space Charge Effects

==> propagation close to the "invariant envelope"

500 kV pulsed thermionic gun for SCSS

SPring

Stable operation with uniform beam quality Low thermal emittance single crystal CeB₆ (Cerium Hexaborite) Low accelerating gradient => Low charge density (10 MV/m) => Free from dark current ⁸

Ulta-Low slice emittance gun ==> 0.05 μm @ source (0.1 μm @ undulator)

Frequency	1x10 Hz (macro pulse)	-
Peak field at cathode	6 GeV/m	> 6 GV/m
Charge per bunch	200 pC	> 1 nC (long pulses)
Rms norm. emittance	0.05 mm mrad (at cathode)	< 0.1 mm mrad (I < 0.6 A)
Peak Current	5.5 A (at cathode)	0.6 A
Average Current	2 nA	>5 μA (long pulses)

Photo-Injector Test Facility at Zeuthen

Goals of **PITZ**

• test facility for FELs: FLASH, XFEL

 \Rightarrow small transverse emittance

(1 mm mrad @ 1 nC)

⇒ long RF pulses => high average power

- \Rightarrow long laser pulse trains
- \Rightarrow high QE cathode Cs₂Te
- PITZ2 features:
 - ⇒ higher gun gradient (~60MV/m)
 - ⇒ flat-top cathode laser profile with shorter rise/fall time
 - ⇒ emittance conservation with booster cavity

Several gun cavities (1.5-cell, L-band, 1.3 GHz) have been conditioned and operated: PITZ-guns1,2,3, BESSY-gun.

Currently, *gun3* cavity is under characterization

measured @ VUV-FEL(FLASH): p = 127 MeV/c, Q = 1 nC

- regularly obtain 2.1 mm mrad (100% rms projected emittance)
- minimum 1.1 mm mrad (90% rms projected emittance)

LCLS Injector Parameters

Parameter	Value
Peak Current	100 A
Charge	1 nC
Normalized Transverse Emittance: Projected/Slice	< 1.2 / 1.0 micron (rms)
Repetition Rate	120 Hz
Energy	135 MeV
Energy Spread@135 MeV: Projected/Slice	0.1 / 0.01 % (rms)
Gun Laser Stability	0.20 ps (rms)
Booster Mean Phase Stability	0.1 deg (rms)
Charge Stability	2 % (rms)
Bunch Length Stability	5 % (rms)

LCLS Gun

Modified from

BNL/SLAC/UCLA version

<u>S-Band (2.856 MHz)</u> <u>1.6 cell</u>

LCLS version

- •RF Dipole suppressed with dual feed
 - Quadrupole suppressed with racetrack shape
- Solenoid Quadrupole component compensated
- Laser axial injection
- Mode separation 15MHz instead of 3.5 MHz

Ti:Sa LASER system

0.02 nm resolution spectrometer

200 fs resolution UV xcorrelator

Cu Cathode QE $\sim 10^{-4}$ improved by laser cleaning

Coils Current Configuration

Beam rotation ~60°

$$r'' = -\left(\frac{eB(z)}{2\,\gamma m\,\beta c}\right)^2$$

$$\vartheta' = -\frac{eB(z)}{2\gamma m\beta c}$$

Beam rotation ~0°

I(A)=-140 ,-140, +140,+140

I(A)=+140 ,+140, +140,+140

Movable Emittance-Meter

Gun and emittance meter in the SPARC bunker

Beam envelope along the drift

Beam rms norm. emittance along the drift

Comparison measurements-computations: envelopes

Comparison measurements-computations:emittance

Velocity bunching concept

Rectilinear Bunching Experiments

	BNL	UCLA	BNL-DUVFEL	UTNL-18L	LLNL
Methode	Ballistic	Ballistic	Velocity Bunching	Velocity Bunching	Velocity Bunching
Acc. Structure	S-band	PWT	4 S-band	1 S-band	4 S-band
Measurement	zero- phasing method	CTR	zero-phasing method	Femotsecond Streak Camera	CTR
Charge	0.04 nC	0.2 nC	0.2 nC	1 nC	0.2 nC
Bunch width	0.37 ps (rms)	0.39 ps (rms)	0.5 ps (rms)	0.5 ps (rms)	< 0.3 ps
Comp. Ratio	6	15	> 3	> 13	10
Solenoid field	No	No	No	Yes	Yes

High average current sources

DC photo-electron source

operation mode		
pulsed / CW	cw	
single bunch charge	122 pC	
single bunch rep rate	75 MHz	
DC voltage / gap	350 kV / 10.57 cm	
average current	9.1 mA	
norm. trans. emittance (rms)	~ 8-10 mm mrad @ 10 MeV	

Long operating experience High average current Low accelerating gradient ---> Low charge density

Multivariate Optimization of Cornell Injector

Results for 800 pC:

Superconducting RF photoinjectors

Main Advantage:

Low RF Power Losses & CW Operation

Problems and Open Questions:

- Emittance Compensation ?
- High Peak Field on Cathode ?
- Cathode Materials and QE ?

Courtesy of Dietmar Janssen

BNL (since 2002)

Courtesy of Triveni Rao

Nb ◀ E_{RF}

FZR Rossendorf

normal-conducting cathode inside SC cavity

w	
1-20 pC	
MHz	
-	
-	
0 μA	
n mrad 900 keV	

Figure 2: a) RF field pattern of E_{TM010} 1300 MHz and B_{TE021} 3802 MHz. b) Axis fields of the RF modes.(Color picture)

gun type	3.4 cell gun, Goals		
operation mode	ELBE	high charge	
pulsed / CW	cw	cw	
single bunch charge	77 pC	1 nC	
single bunch rep rate	13 MHz	1 MHz	
average current	1 mA	1 mA	
norm. trans. emittance (rms)	1.5 mm mrad @ 9.5 MeV	2.5 mm mrad @ 9.5 MeV	
rf frequency	1.3 GHz	1.3 GHz	

Splitting Acceleration and Focusing

- The Solenoid can be placed downstream the cavity
- Switching on the solenoid when the cavity is cold prevent any trapped magnetic field

Quantum Efficiency of Lead at 300 K measured @ BNL

Schematic diagram of a secondary emission amplified photoinjector

Conclusions

Lot of **R&D** ongoing on *technical issues*: Laser and Cathodes, Advanced Diagnostic, High duty, quasi-CW operations, SC RF gun, higher frequencies ultra-high gradients (X and W-band)

Within next year *more experimental data* will be available on RF compression and pulse manipulation for Ellipsoidal Beam and Blow Out Regime

Progress in plasma inj

