O. Brüning CERN, Geneva, Switzerland (for the LHC commissioning team)

LHC Progress and

Commissioning Plans

Contents

LHC layout overview and main parameters

Project status

Main challenges for the commissioning

LHC Layout and Main Parameters

built in old LEP tunnel
8.4 T dipole magnets
10 GJ EM energy
powering in 8 sectors
2808 bunches per beam

- with 1.15 10¹¹ ppb
 360 MJ / beam
 crossing angle & long range beam-beam
- Combined experiment/ injection regions

[A. Koschik et al, TUPLS014] [A. Koschik et al, WEPCH043]

EPAC 2006; 26.-30. June 2006

Oliver Brüning 4

LHC Layout and Main Parameters

LHC DIPOLE : STANDARD CROSS-SECTION

Project Status

Main dipole (MB) production and installation (1232)

-almost all MB have been delivered to CERN (November 2006)
-all MB will have passed cold test by end of 2006
-3/4 have been prepared for installation and slot assigned
-almost 50% have been installed in the tunnel
installation is expected to progress at rate of 18 MB / week

Main quadrupole (MQ) production and installation (392)

-almost all MQ have been delivered to CERN

- -1/3 of the assemblies have been installed in the tunnel
- -2/3 have been slot assigned

installation is expected to progress at rate of 6 assemblies / week

Closure of machine in March 2007, interconnect and pressure test August 2007
 EPAC 2006; 26.-30. June 2006
 Oliver Brüning 6

Cryodipole overview

Data provided by D. Tommasini AT-MAS, L. Bottura AT-MTM

SSS overview

Updated 31 May 2006

Data provided by M. Modenal AT-MAS, L. Bottura AT-MTM

Cryogenics overview

Updated 31 May 2006

Data provided by

L. Tavian AT-ACR

Cryogenic distribution line

<u>LHC Installation</u>

cryogenic distribution in 12

Q6 with cryogenic connection in IR8 EPAC 2006; 26.-30. June 2006

superconducting link

electrical distribution in IR8 Oliver Brüning 11

LHC Installation

Main Challenges for the Operation

Mechanical aperture

Polarity errors

Global magnet field quality & corrector circuit powering

Collimation efficiency

Beam power and machine protection

Collective effects and impedance

Triplet aperture and beam-beam

Electron cloud effect

Mechanical Aperture

all magnets are geometrically measured

- classification & slot compatibility for installation at critical locations
 microwave reflectrometer:
 - → detection of obstacles

[T. Kroyer et al, WEPLS141]

EPAC 2006; 26.-30. June 2006

Oliver Brüning 14

[P. Cameron et al, THPCH105]

-a smaller subset is subject to 'extended' measurements

 \rightarrow field quality modeling during operation \rightarrow corrector powering!

[N. Sammut et al, WEPLS104] [G. Rijk, WEPLS100]

Collimation Efficiency

Machine operation requires high collimation efficiency:

Collimation inefficiency := #p above 10 σ / #p on primary → design value of 2 10⁻³ → below 0.2 h / 2 h are acceptable → 2 stage collimation system with ca 100 collimators!

Effect of machine imperfections:

→ requires good optic and orbit control! → feedback loops

[R.Assmann, TUODFI01] [C.Bracco et al, TUPLS018] [G Robert-Demolaize TUPLS019] EPAC 2006; 26.-30. June 2006 [S. Redaelli, TUPLS130 and TUPLS131] Oliver Brüning

17

Beam Power and Machine Protection [R. Assmann] 1000 LHC Unprecedented beam power: Stored beam energy [MJ] (top) 100 LHC 10 ISR | HERA → potential equipment damage in case TEVATRON of failures during operation 0.1 SppS SNS \rightarrow in case of failure the beam must never LEP2 0.01 10000 reach sensitive equipment! Beam momentum [GeV/c]

Machine Protection System

- → Beam Los Monitors
- → Quench protection system
- → Beam Interlock System
- → reliable Beam Dump system (15)
- \rightarrow dedicated absorbers in case of asynchronous dump

[R. Filippini et al, WEPLS140] [B. Goddard et al, MOPLS008] [B. Goddard et al, TUPLS013] EPAC 2006; 26.-30. June 2006 **Oliver Brüning** 18

[B. Goddard]

Beam Power and Machine Protection

- Unprecedented beam power:
- → all absorbers and the collimation system must be designed to survive an asynchronous beam dump! (total of up to 136 collimators & absorbers)
 - Robust collimator jaw design
- ➔ fiber reinforced graphite jaws are more robust than Cu jaws
- ➔ fiber reinforced graphite has a higher impedance and electrical resistivity

Collective Effects & Impedance

resistive wall impedance:
 image charges trail behind due to resistivity of surrounding materials
 Wake fields drive beam instabilities
 effect increases with decreasing gap opening of the collimator jaws

20

impedance of Graphite jaws either limits the minimum collimator opening → limit for β* or the maximum beam current
 [F. Zimmermann et al, THPCH061]

phased collimation system for the LHC:

Phase 1: graphite jaws for robustness during commissioning
 Phase 2: nominal performance (low impedance, non-linear or feedback)

[R. Assmann, TUODFI01][J. Resta MOPCH091][A. Faus-Golfe WEXFI03] EPAC 2006; 26.-30. June 2006 Oliver Brüning

Triplet Aperture and Beam-Beam

long range beam-beam:

Operation with 2808 bunches features approximately 30 unwanted collision points per Interaction Region (IR).

→ Operation requires crossing angle

non-linear fields and additional focusing due to beam-beam

efficient operation requires large beam separation at unwanted collision points \rightarrow separation of 9 σ is at the limit of the triplet aperture for nominal β^* values! \rightarrow margins can be introduced by operating with fewer bunches, lower bunch intensities, larger β^* values (or larger triplet apertures \rightarrow upgrade studies)

[T. Pieloni, WEPCH095] [U. Dorda WEPCH138]

EPAC 2006; 26.-30. June 2006

Oliver Brüning 21

Electron Cloud Effect

Synchrotron light releases electrons from beam screen:

- \rightarrow electrons get accelerated by p-beam \rightarrow impact on beam screen
- \rightarrow generation of secondary electrons \rightarrow e-cloud
- → heating, instabilities and emittance growth

average arc heat load [W/m]

- I. Pilot physics run
 - First collisions
 - 43 bunches, no crossing angle, no squeeze, moderate intensities
 - Push performance (156 bunches, partial squeeze in 1 and 5, push intensity)

II. 75ns operation

- Establish multi-bunch operation, moderate intensities
- Relaxed machine parameters (squeeze and crossing angle)
- Push squeeze and crossing angle
- III. 25ns operation I
 - Nominal crossing angle
 - Push squeeze
 - Increase intensity to 50% nominal
- IV. 25ns operation II
 - Push towards nominal performance

[R. Bailey et al, MOPLS005]

Staged Commissioning: Tolerances@7TeV

<u>Summary</u>
Mechanical aperture
Polarity errors careful analysis and definition of procedures
Global magnet field quality & corrector circuit powering optimization in Stage I
Collimation efficiency optimization during Stage I
Beam power and machine protection from Stage I to Stage II
Collective effects and impedance only at Stage III
Triplet aperture and beam-beam only > Stage III
Electron cloud effect only at Stage IV

Stage I physics run

Start as simple as possible

Protons/beam ≾ 10¹³ (LEP beam currents)

• Change 1 parameter $(k_b N \beta^*_{1,5})$ at a time

F	Paramete	ers	Beam levels		Rates ir	n 1 and 5	Rates in 2		
k _b	N	β*	I _{beam}	E _{beam}	Luminosit	Events/	Luminosity	Events/	
		1,5	proton	(MJ)	У	crossing	(cm ⁻² s ⁻¹)	crossing	
		(m)			(cm ⁻² s ⁻¹)				
1	10 ¹⁰	18	1 10 ¹⁰	10-2	10 ²⁷	<< 1	1.8 10 ²⁷	<< 1	
43	10 ¹⁰	18	4.3 10 ¹¹	0.5	4.2 10 ²⁸	<< 1	7.7 10 ²⁸	<< 1	
43	4 10 ¹⁰	18	1.7 10 ¹²	2	6.8 10 ²⁹	<< 1	1.2 10 ³⁰	0.15	
43	4 10 ¹⁰	2	1.7 10 ¹²	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15	
15 6	4 10 ¹⁰	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15	
15 6	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 10 ³¹	0.77	

Stored energy/beam ≾ 10MJ (SPS fixed target beam)

Oliver Brüning 26

Stage II physics run

- Relaxed crossing angle (250 μrad)
- Start un-squeezed
- Then go to where we were in stage I

Protons/beam ≈ few 10¹³

Р	aramete	ers	Beam levels		Rates ir	n 1 and 5	Rates in 2 and 8		
k _b	Ν	β* 1,5 (m)	I _{beam} E _{beam} proton (MJ)		Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	
936	4 10 ¹⁰	18	3.7 10 ¹³	42	1.5 10 ³¹	<< 1	2.6 10 ³¹	0.15	
936	4 10 ¹⁰	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15	
936	4 10 ¹⁰	1	3.7 10 ¹³	42	2.5 10 ³²	1.4	2.6 10 ³¹	0.15	
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76	

Stored energy/beam ≤ 100MJ

Stage III physics run

- Nominal crossing angle (285 μrad)
- Start un-squeezed
- Go to where we were in stage II

Pa	arameter	ГS	Beam levels		Rates ir	1 and 5	Rates in 2 and 8		
k _b	Ν	β* 1,5 (m)	I _{beam} E _{bea} proton (MJ)		Luminosit y (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	
2808	4 10 ¹⁰	18	1.1 10 ¹⁴	126	4.4 10 ³¹	<< 1	7.9 10 ³¹	0.15	
2808	4 10 ¹⁰	2	1.1 10 ¹⁴	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15	
2808	5 10 ¹⁰	2	2 1.4 10 ¹⁴ 157		5.9 10 ³²	1.1	1.2 10 ³²	0.24	
2808	5 10 ¹⁰	10 ¹⁰ 1 1.4 10 ¹⁴ 157		157	1.1 10 ³³	2.1	1.2 10 ³²	0.24	
2808	5 10 ¹⁰	0.55	1.4 10 ¹⁴	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24	
1	Nominal		3.2 10 ¹⁴	362	10 ³⁴	19	6.5 10 ³²	1.2	

Eventrate / Cross = $\frac{L\sigma_{TOT}}{k_b f}$

Protons/beam ≈ 10¹⁴

 $L = \frac{N^2 k_b f \gamma}{4\pi\varepsilon_n \beta^*} F$

Stored energy/beam ≥ 100MJ

Global Magnetic Field Quality

field quality measurement before installation:

- -all magnets are measured warm at industry → monitoring
 -all magnets are cold tested
 → electrical integrity & quench
 -a subset undergoes cold measurements
- → warm-cold correlation
- → 'sorting' during installation
 [S. Fartoukh, EPAC 2004]

 -a smaller subset are subject
 to 'extended' measurements

 → field quality modeling
 during operation → corrector

[N. Sammut et al, WEPLS104] [G. RijkWEPLS100]

Identity Catd of Cryodipole H CLBB R_000-IN003416

Cold perform						Advancement							
lst Quench (T) 8.58								Attival	at CER	N	1	2005-11-2-	
2nd Quench (T)	ok				Connec	nch	2005-11-3						
Maximum Reached Field (T) 9				wathing1				Petfotmance Assent				2005-12-13	
Number of Quenches	to 9T	1	watning2				MEB Approval Data Extraction				2006-05-16		
Number of Cooldowi	hs	1	off limits										
Fitst Quench After L	ast Cd (T	<u>)</u> -											
Cold Tests Class		G	-			_		CAUST INTO	Annos	011	_	10	
Deviation from G	ieometri	c Axis	Magnetic Field (Extrapolated to Cold)										
Measutement 9	@ WP08-	-19		Å	petion	e 1 (V	1)		ł	pettore	= 2 (V	/2)	
(1010)	V1	V2		760A	EOL	EOR	11850A		760A	EOL	EOR	11850A	
a geore f (mrad)	30	57	TE	10.109	10.111	N/A	10.051	Titt/kA	10.113	10.115	N/A	10.055	
δx upstream	302	24	ML	14.303	14.303	IN/A	14.304	III	14.303	14.303	IN/A	14.304	
õz upstream	162	081	FD	IN/A	INA	IN/A	IN/A	miad	IN/A	INA	IN/A	IN/A	
ox downstream	.014	.068	P3	-12.61	-11.33	N/A	0.61	units	-6.74	-1.+3	N/A	0.51	
δz downstream	173	28	63	-5.16	-3 31	N/A	2.03	units	-5.91	-110	N/A	1.25	
δx min	316	252	65	-007	-0.06	N/A	0.13	units	-0.03	-0.03	N/A	-0.23	
δz max	.+15	.+19	bS	0.51	0.20	N/A	-0.70	units	0.44	0.13	N/A	-0.77	
ŏx max	.456	.301	66	-0.03	-0.03	N/A	-0.03	units	-0.04	0.00	N/A	0.00	
02 min	- 352	- 342	67	0.64	0.66	N/A	0.95	units	0.66	0.68	N/A	0.97	
δx average	.016	016	68	-0.03	-0.03	N/A	-0.02	units	0.01	0.01	N/A	0.00	
δz average	0	0	b9	0.57	0.55	N/A	0.34	units	0.56	0.53	N/A	0.32	
i obsticam	312	253	ь10	0.00	0.00	N/A	0.00	units	0.00	0.00	N/A	0.00	
t doubt team	171	288	Ь11	0.67	0.67	N/A	0.64	units	0.67	0.67	N/A	0.64	
r downarcearci	115	110	a2	1.57	1.54	N/A	1.60	units	1.77	1.80	N/A	1.74	
Desition of a	.+13	.+17	a3	0.25	0.28	N/A	0.24	onits	0.36	0.38	N/A	0.34	
Position of c	Diffections	1(2)	a+	-0.40	-0.41	N/A	-0.41	units	0.29	0.30	N/A	0.30	
	14	¥ Z	aS .	80.0	80.0	N/A	0.08	units	0.14	0.14	N/A	0.14	
MCS-0X	066	1+2	a6	0.03	0.03	N/A	0.03	units	0.12	0.12	N/A	0.12	
MCS-82	.037	.03	a7	-0.02	-0.03	N/A	-0.03	units	-0.03	-0.04	N/A	-0.04	
ΜCΟ-δκ			a8	-0.01	-0.01	N/A	-0.01	units	-0.01	-0.01	N/A	-0.01	
MCO-8z			a9	-0.05	-0.05	N/A	-0.04	umis	-0.07	-0.07	N/A	-0.06	
MCD-8x		1	a10	0.00	0.00	IN/A	0.00	unis	0.00	0.00	IN/A	0.00	
MCD- <i>i</i> iz			all	-0.08	-0.08	IN/A	-0.08	ប់រាំនៃ	-0.11	-0.11	IN/A	-0.11	

Important Specificities No ternaining non-conformities Dispositions of the Magnet Evaluation Board

Assigned to the slot LBBRA.13L7 (sector 67)