Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises

J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, <u>V.Malka</u>

Laboratoire d'Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761 Palaiseau, FRANCE

Partially supported by CARE/PHIN FP6 project

Summary

Part 1 : Laser plasma accelerator : motivation

Part 2 : Laser plasma accelerator as booster

Part 3 : Laser Plasma accelerator as injector : Production of monoenergetic electron beam

Part 4 : New scheme of injection : toward a stable, tuneable and quasi monoenergetic electron beam.

Part 5 : Conclusion and perspectives

Classical accelerator limitations

E-field $_{max} \approx$ few 10 MeV /meter (Breakdown) R>R_min Synchrotron radiation

New medium : the plasma

Why is a Plasma useful ?

- Superconducting RF-Cavities : $E_z = 55 \text{ MV/m}$
- Plasma is an I onized Medium —> High Electric Fields

How to excite Relativistic Plasma waves?

The laser wake field

Phase velocity $v_{\phi_{epw}} = v_{g_{laser}} = > close to c$ Analogy with a boat

Are Relativistic Plasma waves efficient ?

 $E_z \sim \sqrt{n_e} = \frac{E_z = 0.3 \text{ GV/m} \text{ for 1\%}}{E_z = 300 \text{ GV/m} \text{ for 1\%} \text{ Density Perturbation at 10^{17} cc^{-1}}$

Relativistics microelectronic devices

1 m RF cavity

Summary

Part 1 : Laser plasma accelerator : motivation

Part 2 : Laser plasma accelerator as booster

Part 3: Laser Plasma accelerator as injector : Production of monoenergetic electron beam

Part 4 : New scheme of injection : toward a stable, tuneable and quasi monoenergetic electron beam.

Part 5 : Conclusion and perspectives

Accelerating & focusing fields in Linear RPW

- Small Laser amplitude a₀=0.5
- Homogeneous plasma

LOA

Electron density

Accelerating & focusing fields in plasma channel

- Small Laser amplitude $a_0=0.5$
- Parabolic plasma channel

LOA

Electron density

Accelerating & focusing fields in NL RPW

- Large Laser amplitude a₀=2
- Homogeneous plasma

LOA

relativistic shift of ω_p

6 5 4

Electron density

Three Injection schemes

EPAC06, Edindurgh, Scotland, June 26-30 (2006)

LOA

EPAC06, Edindurgh, Scotland, June 26–30 (2006)

LOA

3 GeV, 1% energy spread e-beam

3.5 GeV, with a relative energy spread FWHM of 1% and an unnormalized emittance of 0.006 mm.

LOA

Summary

Part 1 : Laser plasma accelerator : motivation

Part 2 : Laser plasma accelerator as booster

Part 3: Laser Plasma accelerator as injector : Production of monoenergetic electron beam

Part 4 : New scheme of injection : a stable, tuneable and quasi monoenergetic electron beam.

Part 5 : Conclusion and perspectives

Laser plasma injector

Scheme of principle

Experimental set up

Energy distribution improvements: The Bubble regime

Charge in the peak : few 100 pC According to absolute calibration of scintillator*

J. Faure et al. Nature (2004)

Several groups have obtained quasi monoenergetic e beam but at higher density $(\tau_L > \tau_p)$ *Y. Glinec et al., in preparation, NB

EPAC06, Edindurgh, Scotland, June 26-30 (2006)

CENTRE NATIONAL DE LA RECHERCHE

Quasi monoenergetic e-beam :14 groups

Shot Averaged Energy Spectra $n_{e} = 2e19/cm^{3}$ Single ■ Channel Guided 10^{10} Beam 10^{9} #/MeV (A.U.) 10^{8} 10^{7} 50 20 30 40 80 60 70 10 MeV

At Lundt Mangles et al. PRL (2006)

At LBNL Geddes et al. Nature (2004)

EPAC06, Edindurgh, Scotland, June 26-30 (2006)

LOA

Laser plasma injector : GeV electron beams

 $w_0 = 20 \,\mu \,m$ $\tau = 30 \,fs$ $P = 200 \,TW \,\lambda = 0.8 \,\mu \,m$ $a_0 = 4$ $n_p = 1.5 \times 10^{18} \,cm^{-3}$

Courtesy of UCLA& Golp groups

Laser plasma injector :

- + good efficiency : $E_{e-beam}/E_{laser} \approx 10 \%$
- + simple device
- + sub 30 fs duration : ideal as injector
- + with channel : GeV range is obtained¹ with moderate laser power*
- *But since the efficiency is conserved a compromise between charge and energy must be found
- -Stability not yet demonstrated !
- Energy spread still too large for some applications : $\delta E/E$ \approx few %

* Courtesy of S. Hoocker or F. S. Tzung PRL (2004)

Summary

Part 1 : Laser plasma accelerator : motivation

Part 2 : Laser plasma accelerator as booster

Part 3: Laser Plasma accelerator as injector : Production of monoenergetic electron beam

Part 4 : New scheme of injection : toward a stable, tuneable and quasi monoenergetic electron beam.

Part 5 : Conclusion and perspectives

Experimental set-up

From self-injection to external injection

Optical injection by colliding pulses leads to stable monoenergetic beams

STATISTICS

Bunch charge= 15 + /-5 pCPeak energy= 118 + /-7 MeV $\Delta E = 13 + /-2.5 MeV$ $\Delta E / E = 11 \%$ Divergence= 5.7 + /-2 mradPointing stability= 2 mrad

Monoenergetic bunch comes from colliding pulses: polarization test

Controlling the bunch energy by controlling the acceleration length

By changing delay between pulses:

- Change collision point
- Change effective acceleration length
- Tune bunch energy

Tunable monoenergetic electrons bunches:

Compare with $E_{max}=mc\omega_p/e=250$ GV/m at $n_e=7.5\times10^{18}$ cm⁻³

CENTRE NATIONA DE LA RECHERCH

STA

ÉCOLE POLYTECHNIQU

EPAC06, Edindurgh, Scotland, June 26-30 (2006)

LOA

Conclusions / perspectives

SUMMARY

- Optical injection by colliding pulse: it works !
- Monoenergetic beams trapped in first bucket
- Enhances dramatically stability
- Energy is tunable: 20-300 MeV
- Charge up to 50 pC in monoenergetic bunch
- $\delta E/E$ down to 5 % (spectrometer resolution), $\delta E \sim 10-20$ MeV

PERSPECTIVES

- Combine with waveguide: tunable up to few GeV with $\delta E/E$ ~ 1 %
- Multi/single stage accelerators
- Stable source:
 - extremely important
 - accelerator development
 - light source development
 - Applications (material science, radiotherapy, chemistry etc...)

Parameter designs Laser Plasma Accelerators

ELI : > 100 GeV

 $a_0 = 4$

P(PW)	τ (fs)	N_e(cm⁻³)	W ₀ (μm)	L(m)	E(J)	Q(nC)	E(Gev)
0.12	30	2e18	15	0.009	3.6	1.3	1.12
1.2	100	2e17	47	0.28	120	4	11.2
12	300	2e16	150	9	3.6k	13	112
120	1000	2e15	470	280	120k	40	1120

Golp and UCLA Group

EPAC06, Edindurgh, Scotland, June 26–30 (2006)

SCIENTIFIQUE

Electron beam energy and laser power evolution

Towards an Integrated Scientific Project for European Researcher : ELI

Political Map of the World

