SCRF Test Facilities Toward the ILC

(W) High Energy Accelerator Research Organization (KEK)

Accelerator Lab

Kenji Saito

Outline

 ILC Baseline Parameters Related to SCRF
Representative Test Facilities TTF(DESY), ILCTA(FNAL), STF(KEK)
Expected outcome from these test Facility by the ILC TDR

ILC

The ILC is an electro/positron linear collider at 500 GeV center of mass in the first phase, 1 TeV in the second phase.

This machine is urgently required from high energy physicists for Higgs or Top quark physics.

7/15/2006

EPAC06 June 26 2006

The base technology

The core technology for the ILC is 1.3GHz superconducting RF cavity intensely developed in the TESLA collaboration, which was recommended for the ILC by the ITRP on 2004 August. The cavities are installed in a long cryostat and cooled at 2k, and operated at gradient 31.5MV/m.

Figure 3.3.2: Cross section of cryomodule.

ILC Baseline Parameters related to SCRF

ILC parameters related to SCRF		BCD: Baseline	ACD: Alternative
Cavity S	Cavity Shape		Low loss Reentrant
Acceptance Performance	Gradient [MV/m]	35	40
	Qo	0.80E10	0.80E10
Onaration Parformance	Gradient [MV/m]	31.5	36
Operation refformance	Qo	1.0E10	1.0E10
Cryomodule CM	Туре	Type-IV	
	Number of cavity in one CM	8	8

Repreventative SCRF Test Facilities and The activities

Representative three SCRF test facility for ILC R&D

US domestic collaboration

TESLA Test Facility (TTF) DESY

Preparation facility, Clean-room, Vertical test, Cavity string assembly, Cryomodule assembly, Cryomodlue test, Linac

Module Assembly

n

The LC cold option

- The module assembly is a well defined and standard procedure.
- experience of 10 modules exists
- the latest generation (type III) will be used for series production (XFEL
- several cryogenic cycles as well as long time operation were studied
- the assembly problems occurred are well understood and cured

The LC cold option

The assembly of an 8 cavity string

- · is a standard procedure
- is done by technicians from the TESLA Collaboration
- is well documented using the cavity database as well as an Engineering Data Management System
- was the basis for two industrial studies.
- We are ready to transfer this well known and complete procedure to industry.

TTF LINAC: an unique VUV-FEL facility

250 m

7/15/2006

EPAC06 June 26 2006

35(31.5)MV/m Cryomodlue (2006)

ITRP R1 issue (2004) : The feasibility demonstration of the TESLA energy upgrade to about 800GeV requires that a cryomodule be assembled and test at the design gradient of 35MV/m.

This issue is important with not only the gradient but also Piezo fast tuner. High prioritized issues in the ILC!!

Recent Progress on ILC BCD Input coupler

7/15/2006

EPAC06 June 26 2006

TTF III Coupler Processing Times in CHECHIA

EURO XEFL Construction Schedule

ILC Test Accelerator (ILCTA) FNAL

ILC Test Accelerator (ILCTA) @ FNAL

Cleanroom construction in MP9

02/07/2006

They are reforming the FNAL old building for the ILC activities.

Cryomodule Fabrication Plans for an RF Unit test at ILCTA

FNAL

Cryomodule Assembly Fixtures

FNAL

17

7/15/2006

Cryomodule Design at FNAL Fermilab

- Industrial fabrication and cost reduction of the ILC cryomodule are both crucial • issues for a realistic ILC cost estimate
- In FY05 Fermilab started on converting drawings of the DESY/INFN design of • the ILC cryomodule (Type-III+) to US standards for U.S. vendor fabrication and for cost reduction.
- Next goal is to design an improved ILC cryomodule (Type-IV). ۲

Construction of an ILC baseline RF unit in ILCTA

First ACCEL ILC Cavity at Cornell

Cornell

New BCP system

New HPR system

Electropolishing Development in Jlab

Jlab EP Cabinet

ILC Surface Processing Facility Development at ANL/FNAL

- The Joint ANL/FNAL Superconducting Surface Processing Facility (SCSPF), located at Argonne National Laboratory, is a major chemical processing facility capable of electropolishing and buffered chemical polishing a large quantity and variety of superconducting structures.
- This Facility is made up of two separate chemical processing rooms, with one room to be operated by FNAL and the other ANL.
- Adjoining the processing rooms is a shared ante-room that is class-1000 cleanroom certified. Opposing the processing room and adjoining the ante-room are two class-100 cleanrooms, with FNAL operating one room and the other ANL.

Large grain niobium cavity R&D in Jlab

Large grain Nb sheet production can bring a cost down. BCP could produce 35MV/m gradient and it brings further cost down.

Superconducting Test Facility STF (KEK)

Phase 1 (2005 -2007), Build up ILC SC-RF technology, Establish 35MV/m cavity, Establish 45MV/m cavity, Build up SC-RF infrastructure.

```
Phase 2 (2007 - 2009),
```

Build ILC Main Linac RF unit, at least one unit Achieve ILC BCD performance, Operate the unit for long time,

Establish engineering design detail and basis of cost estimation.

Plan of Superconducting RF Test Facility (STF)

(C) STF underground tunnel plane view

STF Infrastructure

EP: new EP(Electro chemical Polishing) facility to be built by March 2007. **Clean room**: new clean room installation in March 2006.

High gradient cavity R&D program with LL shape

One % cost reduction corresponds to ~ 60 US M\$ with ILC project. A few % is a large cost reduction!

New cavity shape like LL could push up the gradient ~50MV/m. ILC 1st workshop 2004 @ KEK (by K.Saito)

7/15/2006

Principle proof of the 50MV/m in 2005

ICHIRO Cavity program in KEK for ILC

7/15

1. 6

31

Latest result of the ICHIRO#0

7/15/2006

35MV/m STF Baseline Cavity Program

(by Mitsubishi Heavy Industry)

Dumbbell & end group

Ti Jacket end plates

6

End cell & end group

Baseline cavity No.1: Setting to CBP(Centrifugal Barrel Polishing).

Baseline cavity No.1: After CBP and 1st EP(Electro-chemical Polishing).

Excepted outcome from those activities by the ILC TDR (2008-2009)

Summary of the SCRF Test facility

		TTF (DESY)	ILCAT (FNAL)	STF (KEK)
Acceptance test (Vertical test)	EP facility	ОК	07 @ ILCAT(ANL)	Mar 07 @ STF
			OK (Jlab)	OK @ KEK/NP
	HPR	ОК	07 @ ILCAT(ANL)	Aug 06 @ STF
			OK (Jlab, Cornell)	OK @ NP and KEK
	Cavity Assembly	ОК	07 @ ILCTA	07 @ STF
			OK (Jlab, Cornell)	OK ARE2nd EH (KEK)
	VT System	ОК	07 @ ILCTA	End 07 @ STF
			OK (Jlab, Cornell)	OK ARE2ndEH (KEK)
Cryomodule Assembly	String Assembly	ОК	End 06 @ ILCTA	Aug 06 @ STF (4 cavities) Upgraded 07 @ STF (8 cavities)
	Horizontal test	ОК	07 @ ILCAT	Under discussion
	CM Assembly	ОК	Dec. 07 @ ILCTA	Sep 06 @ STF (4 cavities)
Cryomodule Test	ОК		09 @ ILCTA	NO Plan
Test Linac	ОК		09 @ ILCT	Dec 2006
Beam Test	ОК		09 @ ILCT	Mar 07 (STF-I) 2008 (STF-II)
Cryomodule	M6 May 06 (Type-III) M7 Sep 06 (Type-II) M8 Jan07 (Type-III+) M9 Begin 07 (Type-III+, for FNAL)		#1 Mar. 07(TTF-III+) #2 Dec. 07(TTF-VI) #3 Middle 08(ILC type)	#1 Sept. 06 (for STF-I) #2 09 (ILC type for STF-II)

Expected outcomes from three representative SCRF Test Facilities

	Issue	Needed Facility	Where and When
1) Gradient	35MV/m Qo = 0.8E10, >90% yield	VT	STF(07-08) ILCTA(07-09)
	31.5/35MV/ operation	LINAC	TTF(06-07) STF(07-09) ILCTA(08-09)
2)Preparation Recipe	>90% Yield	VT	TTF(06-07) STF(06-07)
3) Tuner	Piezo fast tuner,	LINAC	TTF(06-07) STF(07-09) ILCTA(07-09)
4) Input coupler	Processing time, Cost	Test stand/LINAC	TTF(06-07) STF(06-09) ILCTA(08-09)
5) Large grain Nb	Cost , BCP reliability @ 35MV/m	VT	ILCTA(07-09) FFT (07-08)
6) 10MW Klystron	horizontal, 10MW reliability	LINAC	TTF(07-08) STF(08-09) ILCTA(08-09)
7) Industrialization	Transfer SRF tech. to companies		TTF(06-08) STF(07-) ILCTA(07-)

Summary

- After the ICFA decision 2004 August, TTF in EURO, ILCTA in US, and STF in Asia are in under or in construction stage for the ILC R&D.
- TTF will demonstrate the 31.5 MV/m operation in this year2006, which is important for not gradient but also fast tuner in the ILC.
- EURO XFEL project will come to production phase in 2007, the ILC R&D in TTF would be reduced but still contributes to the cryomodule study and industrialization for the ILC.
- US is forming the ILCTA in FNAL, where the cryomodule activities will really start in 2007 and install an ILC one RF unit at least until 2009.
- Other US laboratories are making unique contributions to the ILC R&D, e.g. EP development or Large grain cavity in Jlab.
- KEK will complete STF-I by 2007 and STF-II by 2009.
- STF will make an unique contribution for the high gradient cavity.
- Major issues on SCRF will be solved using these facilities by the TDR.