



# Neutrino Factories and Beta Beams: Concepts, Challenges, and R&D

Michael S. Zisman

Center for Beam Physics

Lawrence Berkeley National Laboratory

EPACO6-Edinburgh
June 30, 2006



### Introduction



- Discovery of neutrino oscillations led to strong interest in providing intense beams of accelerator-produced neutrinos
  - such a facility may be able to observe CP violation in the lepton sector of the reason we're all here
- Two ideas have been proposed for producing the required neutrino beams
  - a Neutrino Factory based on the decays of a stored muon beam
  - a Beta Beam facility based on decays of a stored beam of betaunstable ions
- Both approaches are challenging!



### Physics Context



#### Neutrino Factory beam properties

$$\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Rightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$$

$$\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Rightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$$

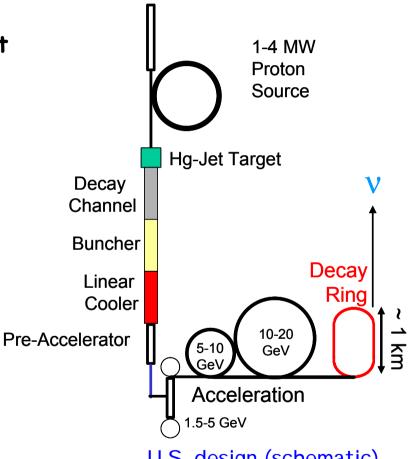
Produces high energy neutrinos

Beta beam properties

- 
$$^{6}\text{He} \rightarrow ^{6}\text{Li} + \text{e}^{\text{-}} + \overset{-}{\nu_{e}}$$
  
-  $^{18}\text{Ne} \rightarrow ^{18}\text{F} + \text{e}^{\text{+}} + \overset{-}{\nu_{e}}$ 

Produces low energy neutrinos

- Decay kinematics well known
  - minimal hadronic uncertainties in the spectrum and flux
- · Electron neutrinos are most favorable to do the science
  - $-\nu_e \rightarrow \nu_\mu$  oscillations give easily detectable "wrong-sign"  $\mu$   $_{\circ}$  do not get  $\nu_e$  from "conventional" neutrino beam line ( $\pi \rightarrow \mu + \nu_\mu$ )




### Neutrino Factory



#### Neutrino Factory comprises these sections

- Proton Driverprimary beam on production target
- Target, Capture, and Decay
  - $_{\circ}$  create  $\pi$ ; decay into  $\mu \Rightarrow MERIT$
- Bunching and Phase Rotation
  ₀ reduce ΔE of bunch
- Cooling
  - oreduce transverse emittance
    - ⇒ MICE
- Acceleration
  - $_{\circ}$  130 MeV ightarrow 20-40 GeV with RLAs or FFAGs
- Decay Ring
  - o store for 500 turns; long straight(s)

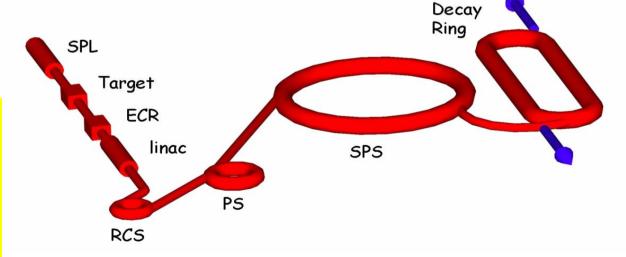


U.S. design (schematic)



#### Beta Beam




- Baseline Beta Beam facility comprises these sections
  - Proton Driver
    ₀ SPL (≈4 GeV)
  - ISOL Target
     spallation neutrons or direct protons
  - Ion Sourcepulsed ECR

Baseline concept assumes CERN PS, SPS

Use of Tevatron also being considered

- Accelerationlinac, RCS, PS, SPS
- Decay Ring

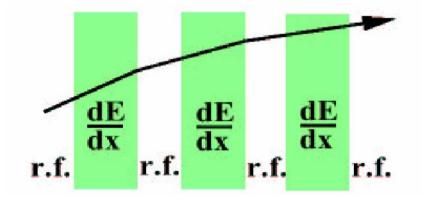
∘ 7000 m; 2500 m straight





### Technical Challenges-NF




- Muons created as tertiary beam (p  $\rightarrow \pi \rightarrow \mu$ )
  - low production rate
    - oneed target that can tolerate multi-MW beam
  - large energy spread and transverse phase space
    - oneed emittance cooling
    - o high-acceptance acceleration system and decay ring
- Muons have short lifetime (2.2 µs at rest)
  - puts premium on rapid beam manipulations
    - high-gradient RF cavities (in magnetic field for cooling)
    - opresently untested ionization cooling technique
    - ofast acceleration system



### I onization Cooling (1)



- Ionization cooling analogous to familiar SR damping process in electron storage rings
  - energy loss (SR or dE/dx) reduces  $p_x$ ,  $p_y$ ,  $p_z$
  - energy gain (RF cavities) restores only  $p_z$
  - repeating this reduces  $p_{x,y}/p_z$





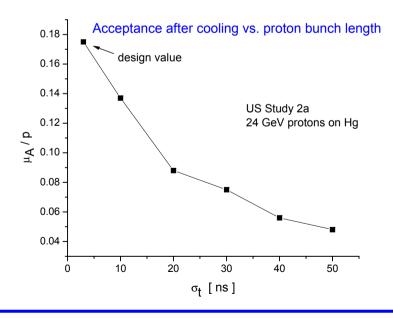
# I onization Cooling (2)



- There is also a heating term
  - for SR it is quantum excitation
  - for ionization cooling it is multiple scattering
- Balance between heating and cooling gives equilibrium emittance  $\frac{1}{2E} = \frac{1}{2E} = \frac{1}{2E}$

$$\frac{d\varepsilon_{N}}{ds} = -\frac{1}{\beta^{2}} \left| \frac{dE_{\mu}}{ds} \right| \frac{\varepsilon_{N}}{E_{\mu}} + \frac{\beta_{\perp} (0.014 \,\text{GeV})^{2}}{2 \,\beta^{3} E_{\mu} m_{\mu} X_{0}}$$
Cooling Heating

 $\varepsilon_{x,N,equil.} = \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2\beta \, m_{\mu} \, X_0 \left| \frac{dE_{\mu}}{ds} \right|}$ 


— prefer low  $\beta_{\perp}$  (strong focusing), large  $X_0$  and dE/ds (H<sub>2</sub> is best)

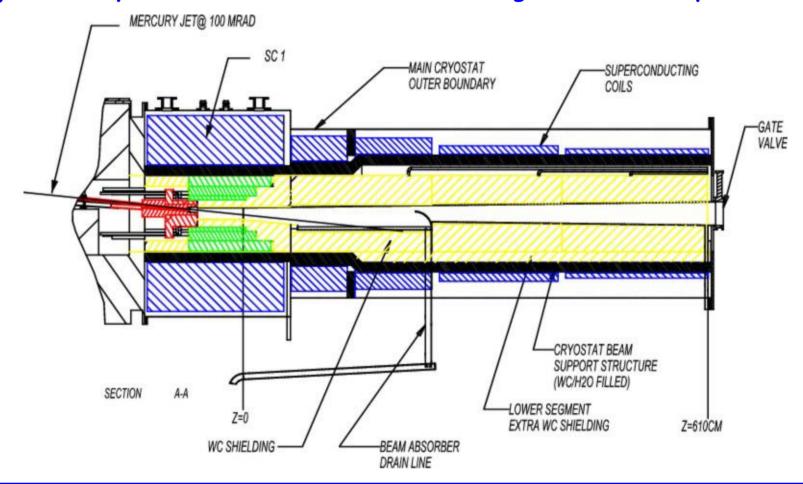


#### **Proton Parameters**



- Desired proton intensity for Neutrino Factory is 4 MW
  - e.g., 2.5  $\times$   $10^{15}$  p/s at 10 GeV or 5  $\times$   $10^{13}$  p/pulse at 50 Hz
- Desired bunch length is 1-3 ns to minimize intensity loss
  - not easily done at high intensity and moderate energy



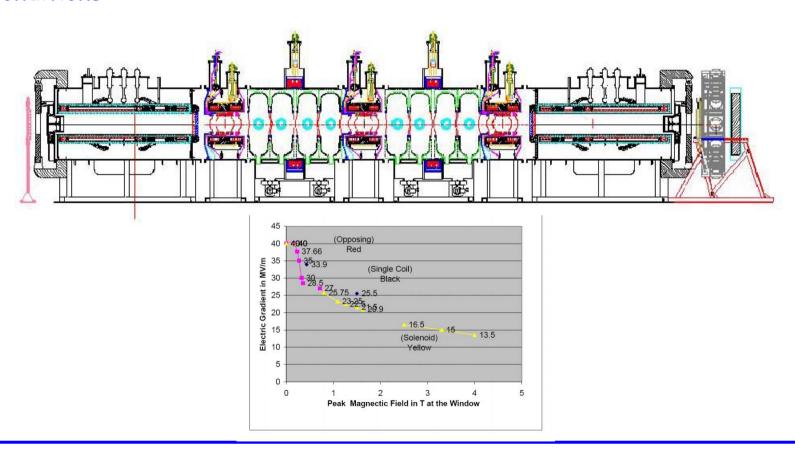

Pulse structure is also important—target issue



### NF Target



- Favored target concept based on Hg jet in 20-T solenoid
  - jet velocity of 20 m/s establishes "new" target each beam pulse






### NF RF



- Cooling channel requires high-gradient RF in a strong magnetic field
  - 805 MHz experiments indicate substantial degradation of gradient in such conditions





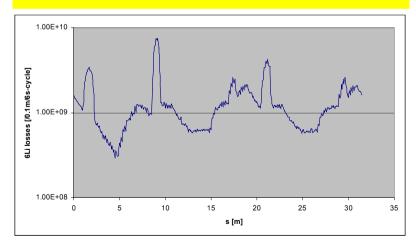
### BB Technical Challenges (1)



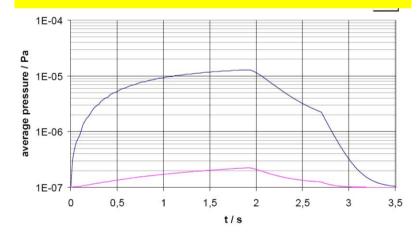
- Production of the required ion species at the required intensity
  - requires production, transport to ion source, ionization, bunching
    - otarget's ability to accommodate primary beam is sometimes limited to a few hundred kW
  - looks okay for <sup>6</sup>He but <sup>18</sup>Ne is presently estimated at about 4% of desired intensity level
    - $_{\circ}$  higher Z atoms are produced in multiple charge states, with the peak at 25-30% of the total intensity

|      | Nominal production rate [ions/s] | Required production rate [ions/s] | Missing factor |
|------|----------------------------------|-----------------------------------|----------------|
| 6He  | $2 \times 10^{13}$               | $2 \times 10^{13}$                | 1              |
| 18Ne | $8 	imes 10^{11}$                | $1.9 	imes 10^{13}$               | 24             |




### BB Technical Challenges (2)




#### RF manipulations in transfers

- ion source  $\rightarrow$  RCS  $\rightarrow$  PS  $\rightarrow$  SPS  $\rightarrow$  decay ring
- process is not 100% efficient
  - obeam losses represent vacuum challenge in PS
    - optimized lattice with collimation system could improve vacuum ×100

#### Predicted <sup>6</sup>Li losses in PS lattice



# Pressure degrades to 75 ntorr from <sup>6</sup>He losses





### BB Technical Challenges (3)




#### ·RF stacking in decay ring

- need to stack beam in decay ring to get acceptable decay rate
  - $_{\circ}$  after 15-20 merges, about 50% of the beam is pushed outside the acceptance
- need substantial momentum collimation scheme
  - obeam losses represent 150 kW average power load on collimators
    - peak load during bunch compression process (few 100 ms) will be at MW level

#### Decay losses also an issue:

SC dipoles require 16 cm aperture and suffer ≈10 W/m heat load

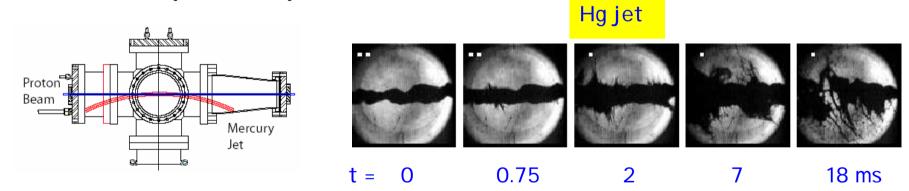
#### Predicted <sup>6</sup>He losses in decay ring





### NF R&D



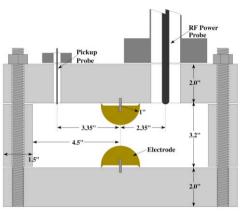

- · R&D program has three main thrusts
  - simulation and theory (ongoing effort as part of ISS)
  - development of high-power target technology
  - development of cooling channel and rapid acceleration technology
- Recent simulation effort has focused on simplifying NF design to reduce costs
  - replaced induction linacs with RF bunching and phase rotation scheme
     this permitted simultaneous use of muons of both signs
  - improved acceleration system (RLAs  $\rightarrow$  non-scaling FFAGs)  $_{\circ}$  larger acceptance  $15\pi$  mm-rad  $\rightarrow$   $30\pi$  mm-rad
  - increased downstream acceptance permitted simplified cooling channel  $_{\circ}$  fewer solenoids, fewer RF cavities, simpler absorbers (LH<sub>2</sub>  $\rightarrow$  LiH)
- Together, improvements doubled intensity (2 signs) and reduced cost of facility by 35%



### NF Target R&D (1)



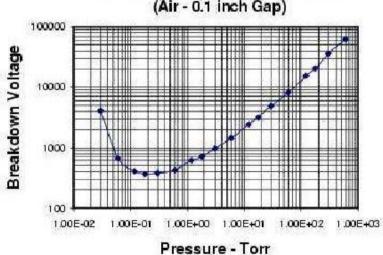
- Disruption at moderate intensity (4 Tp) demonstrated in BNL E951
  - no solenoidal field
- What happens at higher intensity and with strong solenoid? (MERIT)

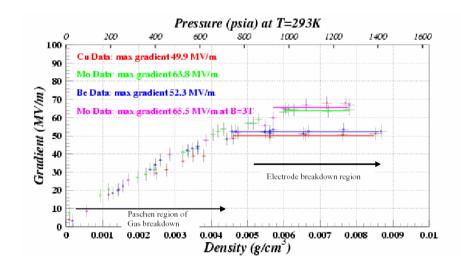





### NF RF R&D (1)




- Testing pressurized version of button cavity
  - use high-pressure H<sub>2</sub> gas to limit breakdown






Breakdown limitation does not degrade in magnetic field

#### Breakdown Voltage vs. Pressure (Air - 0.1 inch Gap)







### NF RF R&D (2)

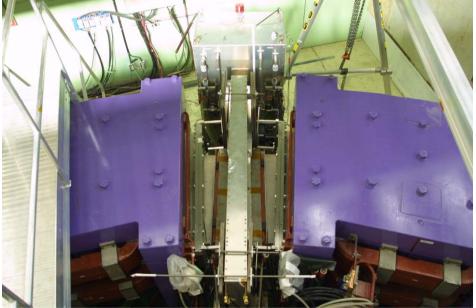


- · Initial tests of 201 MHz prototype cavity are under way
  - fabricated by collaboration of LBNL, Jlab, and U-Mississippi
  - processed as if a superconducting cavity (electropolished)
- · Cavity reached design gradient of 16 MV/m rapidly
  - no signs of conditioning up to 4.2 MW input power





42-cm curved Be window



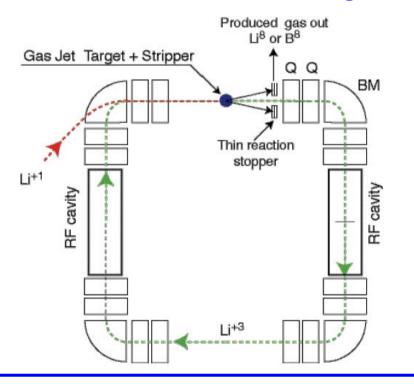

### NF FFAG R&D

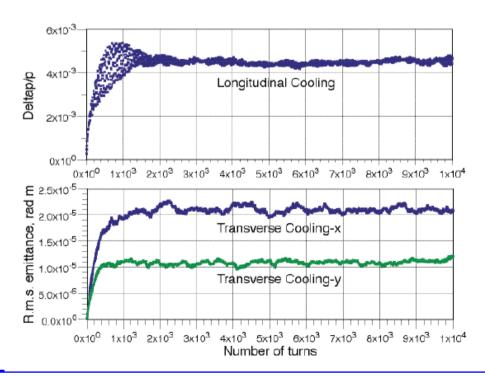


- NuFact-J group has now built and commissioned world's first 150 MeV proton FFAG ring
  - experimental results in good agreement with design predictions
     fast cycling (100 Hz) demonstrated






RF cavity

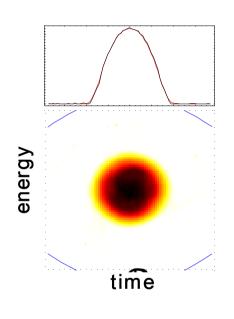


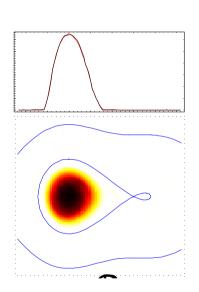

### BB R&D (1)



- · Beta Beam work to date mostly "paper studies"
  - funded for system design, not hardware development
- · New concept for production proposed by C. Rubbia et al.
  - based on ionization "cooling" of ions to maintain equilibrium emittance



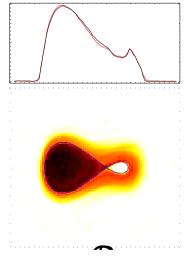


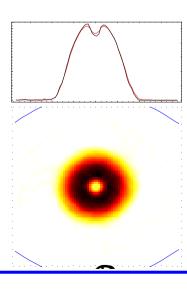




### BB R&D (2)



#### Experimentally demonstrated key bunch merging technique in PS

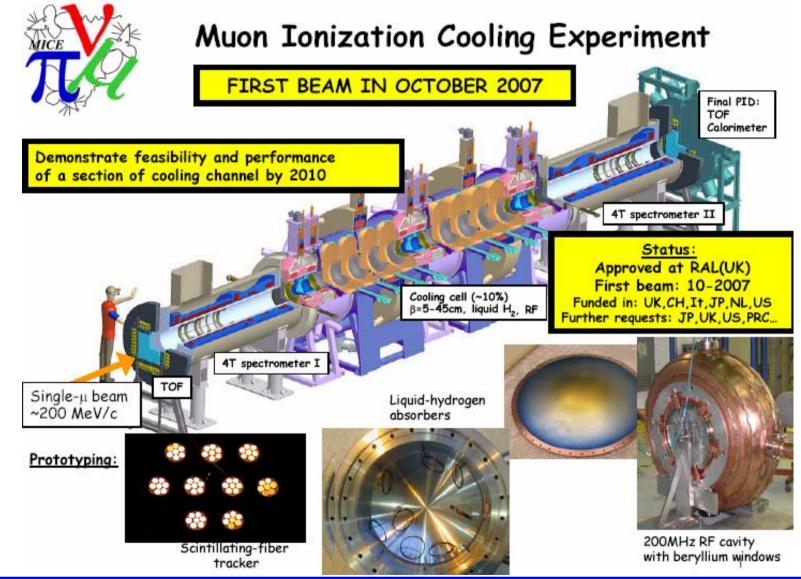



S. Hancock, M. Benedikt and J-L.Vallet, *A proof of principle of asymmetric bunch pair merging*, AB-Note-2003-080 MD

#### **Ingredients**

- h=8 and h=16 systems of PS.
- Phase and voltage variations.

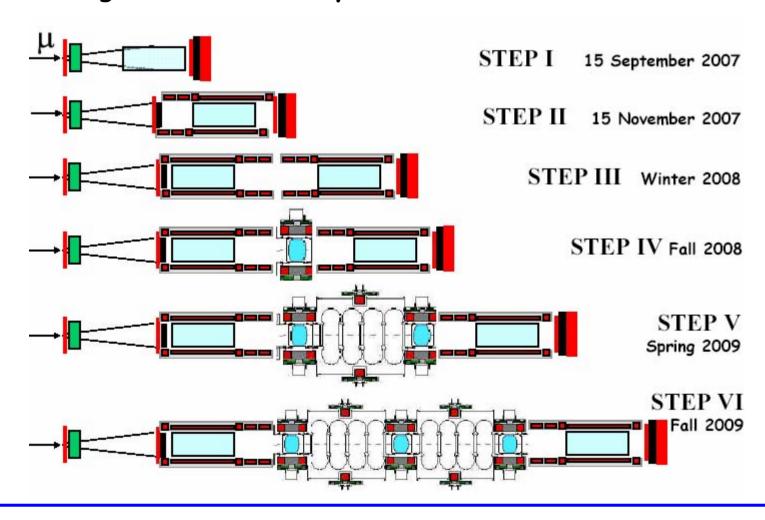







### System Tests-MICE (1)





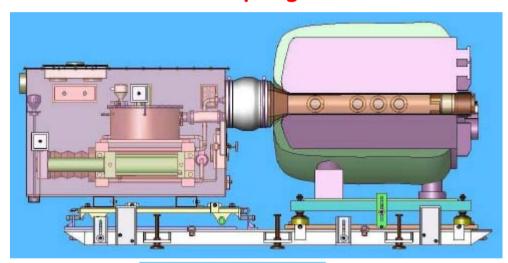


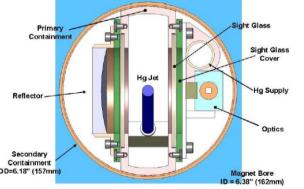

# System Tests-MICE (2)



 MICE channel at RAL will be built in steps to ensure complete understanding and control of systematic errors







### System Tests-MERIT



- · MERIT experiment will test Hg jet in 15-T solenoid
  - 24 GeV proton beam from CERN PS

oscheduled Spring 2007







15-T solenoid during tests at MIT

Hg delivery and containment system under construction at ORNL

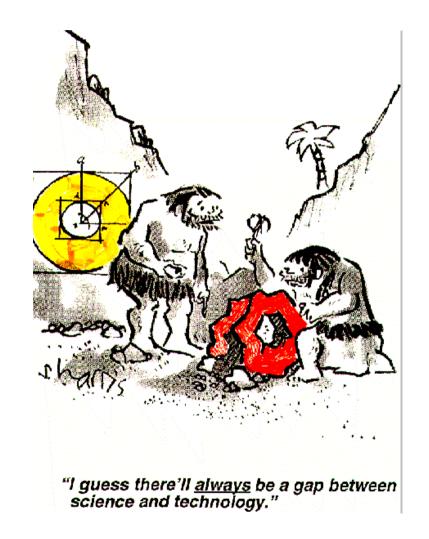


# Summary



- Substantial progress being made toward design of accelerator-based neutrino facilities to study CP violation in the lepton sector
- · Work extending state-of-the-art in accelerator science
  - high-power targets, new cooling techniques, ion source development, rapid acceleration techniques,...
- Work shown here represents efforts in EU, Japan, U.S.
  - carried out in coordinated fashion internationally
     by choice, not dictated externally

 Thanks to Mats Lindroos and Andreas Jansson for sharing their expertise on Beta Beams




### Final Thought



Paper studies alone are *not enough* 

We need to build and test things!

