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INTRODUCTION

We study the influence of coherent synchrotron radiation
(CSR) on particle bunches traveling on arbitrary planar or-
bits between parallel conducting plates which represent the
vacuum chamber. Our ultimate goal is to follow the time
evolution of the phase space density distribution by solv-
ing the 2D Vlasov-Maxwell (VM) system in the time do-
main. In contrast to macroparticle methods, the VM ap-
proach has no statistical noise and is better suited to the
study of microbunching. The fields excited by the bunch
are computed in the lab frame, while the nonlinear Vlasov
equation, formulated in interaction picture, is integrated in
the beam frame using the method of local characteristics
(Perron-Frobenius (PF) method). The interaction picture
allows a relatively large step using the Euler method. De-
tails of our method can be found in [1] and [2]. The major
difficulty here is the need for a detailed understanding of
the support of the phase space density. Here we show re-
cent numerical results obtained in our Liouville-Maxwell
approximation (LMA) for the benchmark bunch compres-
sor at 5 GeV studied in [3]. We analyze the role played by
the transverse force and the effect of shielding and study
the support of the phase space density.

THE LIOUVILLE MAXWELL
APPROXIMATION

Our equations for the fields are

E(R, u) = − 1
2π

∞∑

k=0

ak

∫ u−kh

−∞
dv

∫ π

−π

dθ S(R̂, v, k) (1)

where S = (∇ρL/ε0 + μ0c∂JL/∂u,−μ0(∇ × JL)Y ),
R̂ = R +

√
(u− v)2 − (kh)2(cos θ, sin θ), E(R, u) =

(EZ , EX , BY ), ak = (−1)k(1 − δk0/2), u = ct and
h = 0.01m is the distance between the parallel conduct-
ing plates. The lab charge and current densities (ρL,JL)
are given in terms of the beam frame spatial density by Eq.
(2) in [2]. The lab and beam frames are shown in figure 1
(left frame). R = R0(s) + xn(s) defines the beam to lab
transformation. The beam frane phase space coordinates
are (z, pz, x, px). Here z(s) = s − βct(s), where t(s) is
the time of arrival at arc-lenght s, pz(s) = (E(s)−E0)/E0

with E0 = γmc2 the energy of the reference particle and
px(s) = vx(s)/βc where vx is the velocity component
along n. The equations of motion in the beam frame are

z′ = −κ(s)x, p′z = Fz , x′ = px, p′x = κ(s)pz+Fx. (2)
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Here the collective force is Fz = c1V · E, Fx =
c2(−X ′

0(s)EZ + Z ′0(s)EX + v0BY ) and c1 = e/(βcE0),
c2 = e/(β2E0), V = v0

(
t(s) + pxn(s)

)
, E = (EZ , EX)

and BY are evaluated at R = R0(s) + xn(s) and u =
(s− z)/β. There is a typo in [2], the temporal argument of
E is (s− z)/β instead of s. However, the simulations were
done with the correct argument.

In the VM approach, the fields and equations of motion
are coupled. Our lab to beam transformation given in Eq.
(2) of [2] relates the beam frame spatial density to the lab
frame charge and current densities and will be discussed in
a forthcoming paper. In the LMA, the fields are computed
from (1) using the source from the unperturbed bunch. This
is important as it uncouples the field calculation from the
equations of motion (2).

The initial phase space density with linear chirp is

F = Ke
− p2

z
2σ2

1
2σ2

u
(pz−uz)2− 1

2ε0β0
(x2+(α0x+β0px)2)

(3)

where K = u/(4π2ε0σuσ), and the source, in the LMA,
evolves according to (2) with Fz = Fx = 0. Instead of cal-
culating the fields directly, we calculate Fz and Fx . These
are calculated up front and on a grid adapted to the unper-
turbed beam frame charge density. The equations of motion
(2) are transformed to the interaction picture

z′0 = −R56(s)Fz −D(s)Fx, p′z0 = Fz ,

x′0 = (sD′(s) −D(s))Fz − sFx, p′x0 = −D′(s)Fz + Fx

where D, D′ and R56 are the standard lattice functions,
and integrated using the Euler method and interpolation to
determine Fz and Fx at their appropriate arguments.

NUMERICAL STUDIES

In [2] we presented preliminary numerical results in the
LMA for the benchmark 5GeV bunch compressor studied
in [3]. Here we continue that study, giving a rather com-
plete description of moments and reduced densities with
an emphasis on the effects of shielding and the transverse
force Fx. Our formula with shielding, a image charge ex-
pansion, is given by (1). In our simulations we calculated
the first 10 terms of (1). The formula without shielding is
given by the k = 0 term. We study the LMA with parti-
cles, thus the initial phase space positions of the particles
are randomly generated according to (3). Our code is fast
enough so that we can study reduced densities.

We first discuss the x-emittance, see figure 1 (right
frame). The unperturbed value starts and ends at 10−6 m-
rad, and on the scale shown it behaves essentially like the
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Figure 1: Left: lab frame (Z, X) and beam frame (s, x) for a chicane bunch compressor. Right: Normalized transverse
emittance (x-emittance). In red free space case, in green free space case without transverse force, in blue with shielding.
The values at the end of the chicane are 1.67 mm-mrad, 2.01 mm-mrad and 1.44 mm-mrad respectively.

blue (with shielding) curve. However, the insert shows sig-
nificant differences in the drift at the end of the chicane.
With shielding, which is the most realistic case, the CSR
gives a significant, 44% increase. In the less realistic free
space case there is a 67% increase and in the free space case
without transverse force there is a 101% increase. Thus
these last two cases overestimate the effect of the CSR and
point out the importance of including both transverse force
and shielding in understanding the x-emittance. In figure 2
(left frame) we show the pz density at the end of the bunch
compressor with (blue) and without (green) shielding and
the stationary unperturbed density (black). The CSR has
little effect on the tails and tilts the density to lower energy.
The main point here is that it is easy to calculate reduced
densities. In figure 2 (right frame) we show 〈Fz〉 as a func-
tion of distance along the chicane in the free space case.
This is basically the mechanical part of the radiated power
[5]. It is no surprise that the main action takes place inside
the magnets, indicated by I, II, III and IV on the figure. It
is interesting to note that the mechanical power becomes
slightly positive at the beginning of the fourth magnet, in-
dicating a transfer of energy from the field to the parti-
cles. The integral of 〈Fz〉(s) is the mean energy loss and is
shown in figure 3 (left frame) in three cases. The red curve
clearly corresponds to the previous figure and all 3 curves
are monotone decreasing except for the little blip at the en-
trance to the fourth magnet just discussed. In the free space
case we see there is very little effect from the transverse
force. However, the shielding has considerable effect. It
decreases the energy loss, as is to be expected, since it cuts
off the radiation at certain frequencies. The standard devi-
ation of pz is shown in figure 3 (right frame). Here we see
very small changes. As in the case of the mean, the trans-
verse force has very little effect, however the shielding case
is quite different.

Although we can accurately calculate moments and re-
duced densities with particle simulations, our ultimate goal
is to study the self consistent evolution of the phase space
density with a PF method. The major difficulty here is

caused by the strong correlation between the phase space
variables which makes it hard to determine the support of
the phase space density. We are learning from the LMA
particle simulations how to solve this problem. Our first
discovery is that the support of the spatial density can be
taken to be that of the unperturbed density. We show our
calculation of the spatial density with shielding at the end
of the chicane in figure 4 (left frame). The density without
shielding looks much the same at this scale.

In figure 4 (right frame) we show a scatter plot of the
interaction picture variable w = pz0 − uz0 vs z0 at the
beginning and the end of the chicane. The variation with
s is basically to move the tip of the V slowly downward.
Our original hope for the self consistent VM PF calculation
was to use a fixed grid in the interaction picture, but here
it is evident that a moving grid is necessary. An important
aspect of our current work is to understand how to fix this
grid, necessary in a VM PF method, but not in a VM code
with particles, where one has only to fix the support of the
spatial density. Thus we are currently also pursuing the less
ambitious VM code with particles.
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Figure 2: Left: λ(pz , s), the density in pz . In black stationary unperturbed distribution, in green free space case at s = 15
and in blue with shielding at s = 15. Right: mean of Fz . The magnets are indicated by I, II, III and IV.
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Figure 3: Left: mean of the relative energy loss. Right: standard deviation of the relative energy deviation. In red free
space case, in green free space case without transverse force, in blue with shielding.
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Figure 4: Left: perturbed charge density with shielding at s = 15m (end of chicane). Here σ z0 = 2mm and σx0 =
0.64mm. Right: Scatter plots of the interaction picture variable w = pz0 − uz0 vs z0 at s = 15, where u is the slope in
the initial pz , z correlation. Here u = −36m−1 and σu = 2× 10−6.
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