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Abstract

For a large class of problems the self-consistent simula-
tion of charged particle beams in linear accelerators is nec-
essary. Typically, Particle-In-Cell (PIC) simulations use a
fixed computational grid which has to resolve the bunch
adequately. This leads to enormous memory consumption.
Therefore, and especially in the 3D case, only rather short
sections can be simulated. A remedy to this limitation is
the usage of a dynamic grid which is automatically refined
in the vicinity of particles. For this purpose, a new code,
SMOVE, based on a time-adaptive grid is being developed.
First promising results are presented in this paper.

INTRODUCTION

The most critical issue in the simulation of long accel-
erating structures is the extreme multi-scale character of
the problems. Considering the Photo Injector Test Facility
at DESY Zeuthen (PITZ) [1] as an example, the gun sec-
tion has a length of 2.4 m from the photocathode to a nine
cell TESLA-like booster. At this position a global mini-
mum in transverse emittance has to be achieved. Since the
emittance at this point is crucial for the operation of the
downstream Free Electron Laser (FEL), reliable and accu-
rate simulations using a self-consistent algorithm including
all physical effects are essential.

The laser pulse has a longitudinally flat-top time profile
with a FWHM length of 20 ps and a rise and fall time of
2 ps. The emitted bunches evolve to an approximate length
of 10 mm after emission from the photocathode. From pre-
vious simulations it is known that a longitudinal mesh res-
olution down to 20 μm in the vicinity of the cathode is
needed in order to cover all aspects of the particle motion
in this low-energetic region [2]. Although the spatial reso-
lution may be decreased at a distance of some millimeters
from the cathode, a resolution of about 50 mesh lines along
the bunch length is still mandatory for accurate results.

To avoid discretizing the whole computational domain
using this very small step size an adaptive mesh refinement
(AMR) technique is proposed. Using this approach, mem-
ory requirements and computational time are significantly
decreased while the accuracy of the results is not affected.
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DYNAMIC MESH REFINEMENT

Mesh Refinement and  Coarsening

For the purpose of generating an adaptive mesh a coarse
base grid is constructed. In a second step the mesh is re-
fined in the transversal directions matching the bunch di-
mensions. Since we consider injectors and linear acceler-
ators the transversal position of the bunch is not varying
and hence the transversal discretization remains static. In
the longitudinal direction the mesh is refined by hierarchi-
cal splitting of cells. In each refinement step one plane of
base grid cells and their descendants are refined by bisec-
tion. The mesh step size Δ therefore decreases according
to

Δ = Δbase/2N , (1)

with N being the refinement level.
In figure 1 snapshots of the computational grid along

with the corresponding space charge fields of a bunch in
the 1.5-cell cavity of the PITZ gun is shown. The underly-
ing structure of the hierarchical grid is used for providing
automatic mesh refinement ahead of the bunch as well as

Figure 1: Computational grid and space charge fields for
the PITZ gun. The discrete material representation changes
with time according to the local resolution of the dynamic
grid. This can be seen by comparing the metallic contours
in both snapshots.
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automatic coarsening in the regions left behind the parti-
cles. The difference in refinement levels of neighboring
cells is limited to one in order to keep numerical reflections
at a low level [3].

Interpolations

The solution of Maxwell equations for the discretiza-
tions shown in figure 1 is obtained by applying the Finite
Integration Technique (FIT) [4]. However, in order to apply
the method, the values of field components have to be inter-
polated to their new position after each grid refinement or
coarsening process. The accuracy of the simulation results
critically depends on the numerous interpolations which
may even lead to numerical instabilities. Therefore, sev-
eral interpolation schemes have been tested. The simplest
one is the linear interpolation. Linear interpolation does
not produce any overshooting (see fig. 2) which is a direct
source for instabilities. However, a linear approximation of
the high-frequency fields in the vicinity of the bunch is not
sufficiently accurate. More accurate results were achieved
using spline interpolation.

Since many splines show significant overshooting (see
fig. 2) a class of sub-splines has been selected. Sub-splines
differ from the general definition of splines in their order of
continuous differentiability. A spline of polynomial order
p is p − 1 times continuously differentiable. In the case of
sub-splines, the continuity demands are relaxed in order to
minimize the overshooting effects. Thus, a less oscillatory
interpolation of order k < p − 1 is generally obtained.

In order to minimize the oscillatory behavior, continuity
demands are relaxed. Sub-splines are continuously differ-
entiable up to an order of k with k < p − 1.

To determine the coefficients of a spline interpolation,
usually a system of equations has to be solved. This makes
their application very expensive in codes which use inter-
polations heavily. The class of Akima-splines is well suited
to this problem. Their coefficients can be calculated explic-
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Figure 2: Comparison of a C-Spline and an Akima-Spline.
The Akima-Spline shows less overshooting and because of
the slope limiting it is smoothed out to a constant at both
ends of the curve.

itly by combining first order differences of five supporting
points [5].

Furthermore, in order to reduce numerical noise the
spline coefficients may be modified using the slope limiter
technique. Slope limiters were originally introduced in re-
construction theory for Finite Volume methods. The slopes
of neighboring intervals are compared using, e.g., the min-
mod operation [6]:

minmod(a, b) :=

⎧
⎨

⎩

a; if |a| < |b|, a · b > 0
b; if |a| > |b|, a · b > 0
0; a · b < 0

(2)

Minmod chooses the smallest argument in absolute value if
they have equal sign and zero otherwise. This modification
leads to a smoothing of the spline interpolation since alter-
nating gradients in neighboring intervals are flattened (see
fig. 2).

Dispersion Properties

When increasing the spatial resolution in a numerical
simulation, the numerical phase velocity of propagating
waves approaches the physical phase velocity. This be-
havior was investigated with the code SMOVE [7] working
on the basis of the time-adaptive mesh algorithm described
above.

Figure 3: With increasing refinement level the resolution
increases and the numerical phase velocity approaches the
speed of light in vacuum (top). Gaussian packet for the
refinement levels 0, 1, 3 and 5. In the legend the memory
needed for the time-adaptive mesh approach and a static
grid of equal resolution (in brackets) are given (bottom).
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In a first example the phase velocity of a mono-frequent
sinusoidal wave was determined depending on the refine-
ment level. In figure 3 (top) the numerical phase velocity
is plotted for refinement levels of zero up to seven along
with a fitted curve. Level zero corresponds to the non-
refined base grid resolving one wavelength with five grid
points (Δ = λ/5). A refinement level of seven corresponds
to 27 = 128 refinement steps resulting in a resolution of
Δ = λ/640.

In a second investigation a traveling wave of Gaussian
shape was considered. Starting from a resolution of eight
points, the refinement level was increased until no disper-
sion error in the numerical solution could be observed after
a distance of five meters. Figure 3 (bottom) shows the result
(on the first meter) for different refinement levels. The most
remarkable result is the memory consumption. In order to
achieve an accurate transmission using the time-adaptive
mesh approach, memory requirements are increased by a
factor of ≈ 2.13 compared to the base grid. When using a
static grid of the same resolution this factor is 32.

EXAMPLES

The code is validated using the PITZ gun as an example.
In figure 4 the evolution of the transversal RMS beam size

Figure 4: xRMS-size calculated by SMOVE and ASTRA
in tracking mode (top) and in self-consistent mode (bot-
tom). The simulation of longer distances is easily possible
without any memory problems.

in tracking mode and in self-consistent mode are given. For
comparison the results obtained with the code ASTRA [8]
are shown in the same diagram.

In the current implementation stage of SMOVE, there is
only the so-called kick or nearest grid point scheme for the
particle-to-grid interpolation available which suffers from
severe numerical noise. Additionally, the resolution has to
be extremely high to capture all effects of the particle mo-
tion. In the near future an interpolation scheme of higher
accuracy will be implemented [9]. This will relax the de-
mands on grid resolution, the number of computational par-
ticles needed and lead to more accurate results. Simula-
tions using a minimum grid spacing of 11 μm showed al-
ready good agreement with the self-consistent simulations
presented in [10].

CONCLUSIONS

A new approach to self-consistent simulations of
charged particles including geometry effects was pre-
sented. It is based on a time-adaptive mesh which is auto-
matically refined in the vicinity of particles. Due to the con-
siderable reduction of memory demands it is well-suited
for the application to long accelerator structures. First re-
sults obtained utilizing the code SMOVE, based on this
method, were presented. They are in good agreement to
results achieved using other methods. The implementation
of a more accurate algorithm for the coupling of particles
and fields is scheduled for the near future.
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