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Abstract

The modeling of long beam evolution dynamics in non-
linear accelerator structures has raised new interest in the
effective methods of nonlinear effects calculation. More-
over, it is preferably to use both analytical tools and nu-
merical methods for evolution modeling. Usually the stan-
dard numerical methods and computer codes are based on
the concept of symplectic transfer maps, whereas the an-
alytical tool is the theory of normal forms. The method
of normal forms can be realized in symbolic and numer-
ical modes easily enough. In this paper, we discuss the
normal form theory based on the matrix formalism for Lie
algebraic tools. This approach allows using well known
methods of matrix algebra. This permits to compute nec-
essary matrices step-by-step up to desired order of approx-
imation. This procedure leads to more simple structure of
matrix representation for very complicated structure of this
map does not allow using this map for practical computing.
Therefore, it is necessary to transform this map in more
appropriate form. In another words the new matrix repre-
sentation for the map is particularly simple and has explicit
invariants and symmetries. Some examples of correspond-
ing results are given.

INTRODUCTION

Usually in beam physics standard numerical methods are
based on the well known concept of symplectic transfer
maps (see, e.g. [1]. The basic analytical tool is the the-
ory of normal forms [2], which is the natural generaliza-
tion of canonical perturbation theory for flows to transfer
maps. Normal forms for symplectic maps have the essen-
tial advantage in computer codes implementing and allow
us to computation of high perturbative orders automati-
cally. Moreover, even if the series are generically divergent
such as in the Hamiltonian case, a detailed analysis of the
mechanism of divergence was carried out, allowing to use
the approximation provided by truncated normal forms in
rationally chosen domains [3],[4].

Methods of normal forms is one of powerful analytical
and numerical methods for studying of various aspects of
beam dynamics including high orders aberrations. There
are some crucial problems for the analysis of long term sta-
bility of beam dynamics in circular accelerators. Some of
them are connected with understanding of the geometry of
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phase portrait of corresponding dynamical systems. It is
known that the 2D-geometry of the phase portrait is well
investigated (see, for example, [3]). There are known rather
few results for the four dimensional phase space and for the
higher dimensionality there appeared very hard problems.

The most of known analytical methods used for the anal-
ysis of nonlinear beam dynamics are based on the methods
of normal forms (see, e.g. [4]).

In this report the normal form technique is described
using the matrix representation of Lie algebraic tools [5].
This permits us to use different kinds of linear algebra
methods for necessary manipulating. The analytical form
of corresponding results allows to investigate different pos-
sibilities of desired dynamics realization.

PRELIMINARY CONCEPTS AND
DEFINITIONS

This section is devoted to basic conceptions of Lie alge-
braic tools [1].

Beam Propagator

Usually the motion equations for particles are described
as nonlinear Hamiltonian differential equations, which can
written in the following vector form:

dX
ds

= F(X, s), (1)

where

F(X, s) = J
∂H(X, s)

∂X
. (2)

Here H(X, s) is a Hamiltonian, describing the system un-
der study and J0 — the canonical symplectic matrix. In
most cases we can consider the four dimensional phase vec-
tor X = (x, px, y, py)∗. If one can neglect the coupling
between the longitudinal and transverse motions, then he
analyzes the dynamics only in the transverse plane x, y.
In this case he can introduce two dimensionless quantities
px = dx/ds, py = dy/ds as conjugate momentums. Ac-
cording to the Lie algebraic formalism (see, for example,
[1]) the current vector X(s) can be constructed in accor-
dance with following equality:

X(s) = M(s|s0) ◦X0, (3)

where M(s|s0) is a map generated by eqs. (1), (2). Here
we consider the motion of a single particle in a circular ma-
chine with m magnetic elements. Let x, y be the horizontal
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and vertical axes perpendicular to the reference curvilinear
orbit, s — the independent coordinate, measured along this
orbit and L is the total length of the machine. There are
several types of Lie map factorization (see, e.g. [6]).

Matrix Formalism for Beam Propagator Con-
struction

The perturbation approach allows to write eq. (1) in the
form of multivariate Taylor matrix series

dX
ds

=
∞∑

k=0

P
1k(s)X[k], (4)

where X[k] is a Kronecker power of k-th order. Solutions
of the initial problem for eq. (6) can be written in the fol-
lowing form

X(s) =
∞∑

k=0

M
1k(s|s0)X

[k]
0 , (5)

where X0 is an initial phase coordinate vector at some ini-
tial moment s0, M11 is a matriciant for linearized motion
equation dX/ds = P11X [7], and M1k(s|s0) are aberra-
tion matrices of k-th order (standard two-dimensional ma-
trices). For some (including step function) one can evaluate
these matrices in a symbolic mode. These block matrices
have dimensions equal to n×

(
n+k−1

k

)
. For these matrices

can be evaluated some convenient formulae, for example,

M
12 = M

11
P

11
2 ,

M
13 = M

11

(
P

11
3 +

1
2!

P
21
2

)
,

where Pk 1
m =

k∏
j=1

G
⊕((j−1)(m−1)+1)
m and matrices Gm can

be computed using so called interaction representation [8].
For example, for the matrix G2 one can write

G2(s | s0) =

s∫

s0

M
11(s0 | τ)P12(τ)M22(τ | s0)dτ,

and Mkk =
(
M11

)[k]
.

Matrix Formalism for Magnetic Lattices

Let particles evaluate in a circular machine with m mag-
netic elements. Let Mj be a Lie map, which describes
a j-th element in a circular machine. Then the following
productM(m) = Mm ◦Mm− ◦ . . .M1 describes the full
propagatorM(m). In another words one can write

X (sk) = Mk ◦X (sk−1) , ∀ k = 1, m, (6)

or

X (sk) = Mk ◦
(
Mk−1 ◦

(
. . . ◦M2 ◦

(
M1X (s0)

)))
.

The direct evaluation of the one turn map, consisting of
Mk, can be done using matrix presentation of Lie maps. In
general the exact representation ofM(m) is not possible to
evaluate even in the case of step function approximation for
the external guiding field, with L as a number of intervals.

Mfull = M(L) ◦M(L−1) ◦ . . . ◦M(2) ◦M(1). (7)

NORMAL FORM TRANSFORMATIONS

The above described approach is one of variants of per-
turbative approaches. Usually it can be based on two steps.
On the first step one associates an exactly symplectic map
to each guiding element. Then one combines the full map
for some machine as a composition of all the maps of the
lattice according to (7). All nonlinearities, generated by el-
ement, are intermixed into very complex map. After the ad-
ditional procedure of truncation one can apply some trans-
formations, which will simplify the desired full map. Here
one of the most known approaches is based on the Dragt–
Finn factorization theorem [6]. But in the case of circular
machines one selects a particular section of the machine
and studies only intersecting trajectories. In this case this
resulting map is named as an one-turn map. The very com-
plicated structure of this map does not allow to use this
map for practical computing. Therefore it is necessary to
transform this map to another more appropriate map. In
other words the new map is particularly simple and has ex-
plicit invariants and symmetries. Similar procedure leads
to so called normal form of the map. The process of nor-
mal form searching has successive steps. The first step of
them is based on linear approximation. In beam physics
similar transformation is called Courant–Snyder transfor-
mation LCS, which leads the matriciant M11 to diagonal
form, using the linear transformation matrix L. For the
four-dimensional transverse phase space we can write

H
11 = diag

(
eiω1 , e−iω1, eiω2 , e−iω2

)
= LM

11
L
−1. (8)

This transformation leads us to new coordinates, so called
normal form coordinates:

Z = LCS ◦X = LX,

where Z are the new variables in phase space called normal
coordinates. The form of new matriciant shows that in new
coordinates the motion is a direct product of rotations, that
leads automatically to two following (independent) linear
invariants: zkzk, k = 1, 2, where zk are components of
the vector Z and z denotes the complex conjugate for z.
These coordinates are called the Courant–Snyder coordi-
nates. Often there are used another types of coordinates:
so called action–angle coordinates:

{
Jk =

√
ρkeiϕk , ϕk

}
.

The main goal of similar transformations is to obtain con-
venient description both motion equation and auxiliary
characteristics, such as invariants, fixed points (lines) and
so on.

Let us apply the Courant–Snyder transformation LCS to
X(X0; s):

Z(Z0; s) = LCS ◦X(X0; s).
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Here we should note that the map, generated by (8), is real.
This allows us to neglect two equations, corresponding to
z1, z2. Applying this transformation to the series (5) we
can write:

Z(Z0; s) = LCS ◦
N∑

k=1

M
1k(s|s0)X

[k]
0 =

H
11Z0 +

N∑

k=2

LM
1k(s|s0)

(
L
−1Z0

)[k]
=

H
11Z0 +

N∑

k=2

LM
1k(s|s0)L−[k]Z[k]

0 =

H
11Z0 +

N∑

k=2

H
1k(s|s0)Z

[k]
0 , (9)

where H1k = LM1k(s|s0)L−[k] are new matrix coeffi-
cients in the series for normal form for phase coordinates
(9). The main goal of the normal theory is retrieval of
a sequence of new transformations, which have to some
more particularly simple form. This simplicity has in mind,
for example, existence explicit invariants or more sym-
metries in comparison with the original map. Let Ξ =
{ξ1, ξ2, ξ3, ξ4, }∗ is a new phase vector, concerned with
intermediate vector Z with the help of following equality
Ξ = Υ ◦ Z. In this case we have

Ξ(s) = Υ ◦ Z(Υ−1 ◦Ξ0; s). (10)

Some design properties of the new map Ξ can be ex-
pressed in term of the group theory. This leads to some
special conditions on matrix coefficients. In other words
in eq. (9) there are only some monomials on new variable
ξi, i = 1, 4. The transformations similar to (10) are ap-
plied to an initial map, generated by motion equation, and
a researcher simplifies this map step-by-step. Here we can
use a technique similar to a classical approach or to Kol-
mogorov’s approach. According to them the sequential
canonical transformations can be constructed as the follow-
ing sequence

Z = Z1 ⇒ . . . εnZn ⇒ . . . , for the standard approach,

Z = Z1 ⇒ . . . ε2nZn ⇒ . . . , for the Kolmogorov’s approach,

where ε is some (formal) small parameter. In our case of
matrix presentation for Lie maps (see eq. (5)) one should
apply nonlinear transformations of corresponding orders.
In another words the order of nonlinearity of these trans-
formations rises from on step to another. For example, af-
ter the first transformation using linear transformation L
(in matrix presentation with the help of the matrix L) one
evaluates the matrix H11. On the second step he should
find the new transformation, for example, in the following
form V0 = EZ0 + T12Z[2]

0 (similar Z = EV + T12V[2]),

where E is an identity matrix and T12 — a required matrix.
After some evaluations one can obtain (up to second order)

V = H
11V0 +

{
T

12
(
E−H

11
)

+ H
12

}
V[2]

0 +O(3),

where O(3) contains all terms of third order and higher.
From this equation one can find the matrix T12:

T
12 =

(
E−H

11
)−1 (

P
12 −H

12
)
,

where T12 a new aberration matrix of second order. The
form of this matrix is selected according to some variant
of normal form technique. Continuing similar procedure
we can evaluate (order by order) the above mentioned se-
quence.

The choice of the order of approximation N is estimated
using two starting points. The first is determined by con-
dition of computational errors minimization in the phase
space domain of interest. The second reason for order re-
striction is to guarantee the symplecticity proper up to the
same order N , as these reasons have to come to an agree-
ment with each other.

At the same time there is an approach based on using
invariants of motion (see, for example, [2]). Here a re-
searcher can conform to the following procedure: on the
first step he constructs of the map invariant (invariants),
and on the second step he studies the asymptotic dynam-
ics using the invariants properties. The fact is that trun-
cated invariants keeps the symplecticity property and this
allows to conserve geometrical information inherent in the
dynamical system under study.

Using well developed technique of normal forms we
build a sequence of transformations: from aberration matri-
ces M1k, k ≥ 2 up to new matrices which are more relevant
for our system description. The analytic manipulation for
these matrices (normal form matrices) allows to investigate
dependence of the often used characteristics (such as the
tune shift) from the lattice parameters. This is necessary
for optimization of the lattice using analytical technique.
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