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Abstract

Beam dynamic effects of an APPLE II type undulator in
the BESSY II storage ring are simulated. The fast simula-
tion method is based on a multiple harmonic decomposition
of the magnetic field and a generating function tracking ap-
proach. Because of the relatively large undulator period
length of 112 mm corrections of the dynamic multipoles
using so called L-shims are required to maintain a good
dynamical aperture.

INTRODUCTION

There is an increasing demand on operating helical in-
sertion devices (ID) as sources of polarized synchrotron ra-
diation. The influence of such IDs, specially of the APPLE
II [1] type, on the beam dynamics in the 1.7 GeV BESSY
II ring is discussed in this paper, together with the applied
simulation tools. The results are valid for an idealized ID
model to check intrinsic effects of the ID on the beam dy-
namics. A sequence of identical periods is sufficient to
model the full ID. The developed methods are applied to
optimize dynamical multipole correctors (L-shims) of the
ID, the beam working point and harmonic sextupoles.

The paper discusses three topics, (i) the harmonic scalar
potential expansion and dynamic multipole correction, (ii)
the generating function (GF) based tracking routine [2],
and (iii) some beam dynamic results. A frequency map
method is applied to analyze tracking data. The tracking
results apply only to the horizontal and vertical planar wig-
gle mode of integer, multiple periods in the ID, obtained
by tuning the ID shift parameter ψ to 0 and π radian, re-
spectively. These constrains result in a significant simpli-
fication of the GF tracking routine. However, the method
is sufficiently general to be extended to arbitrary shift pa-
rameters and end pole shaping [3]. In our present example,
an explicit end pole correction is not required. The ψ = π
mode is probably the most critical tuning case for the beam
dynamics, as expected from the fast changing field shape
shown in Fig. 1. Most of the results apply for this case.

An ideal ID has vanishing horizontal and vertical field
integrals, integrated along straight lines parallel to the ID
axis. Because electrons will not follow these lines but wig-
gle around it, they accumulate integrated orbit kicks and
shifts. These orbit distortions are described by dynamical
multipoles [4]. The relatively large period length of 112
mm of the studied ID UE112 [1] together with the moder-
ate beam energy of 1.7 GeV leads to relatively large orbit
wiggles, enhancing the impact of dynamical multipoles. As
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the result of this study, we suggest appropriate field shims
(L-shims) to cancel the dynamical multipoles [1, 5, 6]. In
this way, a large horizontal beam acceptance can be pre-
served.

HARMONIC FIELD EXPANSION

An APPLE II undulator is composed of four identical
magnet rows which can be moved longitudinally with re-
spect to each other. The vertical field distribution of one
row as derived from a numerical simulation is decomposed
into 2x20 Fourier components. Using these coefficients the
complete 3D-field distribution is obtained from the scalar
potential,

V =
N∑

n=1

(V1n + V2n + V3n + V4n)

V1n = (
enkyy

nky
(Bcncxn− + Bsnsxn−) + B0

ekzy

Nkz
)cz+

cxn± = cos(nkx(x± x0))
sxn± = sin(nkx(x± x0))
cz± = cos(kzz ± ψ/2).

The terms V2n, V3n and V4n are constructed by obvious
symmetry operations. Similarly, the vertical field integral
distribution of the row phase ψ dependent terms of the L-
shims is Fourier expanded and the analytical representation
has the form:

Ṽ =
N∑

n=1

Ṽn

Ṽn =
1

nky
(B̃c1n cos(nkxx) + B̃s1n sin(nkxx))enkyy +

1
nky

(B̃c2n cos(nkxx) + B̃s2n sin(nkxx))e−nkyy

Generally, the coefficients for the upper and lower mag-
net girder may be different though for the UE112 case we
applied a symmetric configuration.

The field V and the z-integrated field Ṽ parameterization
with only 2x20 coefficients reproduces the real distribution
in three dimension for various gaps and row phases with a
high accuracy, Fig. 1. The dynamical multipoles and the
field due to the iron shims depend on the row phase ψ, and
they are roughly proportional to each other [5].

GENERATING FUNCTION

The tracking routine is based on an analytic, expanded
form of the GF in a Cartesian coordinate system [2]. A GF
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Figure 1: Comparison of simulated fields (black) and fields
generated from the analytical model (red). The differences
(blue) are enhanced by a factor of ten. Left: vertical B y

(ψ = 0) and horizontal Bx (ψ = π) UE112 field. Right:
Horizontal and vertical field integral changes due to 4 L-
shims for ψ = π.

of type ’F3’ is approximated by an iterative solution of the
Hamilton Jacobi equation [7, 8], H + ∂F/∂z = 0. The
Hamiltonian is expanded as,

H = 1 + (Px −Ax)2/2 + (Py −Ay)2/2.

The vector potentials are normalized by Bρ of the actual
electron momentum and are derived from the scalar poten-
tials V with Az=0. The result of the 2nd order expansion
is equivalent to a direct integration of the Hamiltonian over
one full period,

F3 = f101pxf + f011pyf + f002

−z − xipxf − yipyf − p2
xfz/2− p2

yfz/2,

where the coordinates at the entrance point into the
ID period are (xi, pxi, yi, pyi) and at the exit point
(xf , pxf , yf , pyf ). For the fabc terms we get

−2f002 =
∫

(A2
x + A2

y) dz.

The values of f101 =
∫

Ax dz and f011 =
∫

Ay dz
are zero in the examples discussed here (not necessary for
the applied method), equivalent to vanishing 2nd field inte-
grals, e.g.

∫ ∫
By dz dz = 0.

The conjugate, mixed coordinates are given by applying
the relations

∂F3/∂pxf = −xf , ∂F3/∂pyf = −yf ,

∂F3/∂xi = −pxi, ∂F3/∂yi = −pyi.

At this level of approximation the implicit coordinate rela-
tions can directly be solved from the GF.

A comparison between our idealized model and the pro-
gram code ’WAVE’ [9], based on finite integral methods for
the field and the particle tracking, of the unshimmed, full
device including end poles is presented in Figs. 2 and 3, for
ψ = π. Fig.2 shows the difference between all 4 entrance
and exit coordinates. The initial horizontal coordinates are
evenly distributed on a horizontal phase space ellipse with
y=5mm fixed. Therefore, each initial position x i value is
correlated with two equal, initial x′i-values of opposite sign.
The difference of these coordinates Δx = xf − xi, e.g.,

Figure 2: Comparison of GF based simulation of the full
device (blue) with the symplectic integration code ’WAVE’
(red). The difference between exit and entrance coordinates
(clock wise, starting upper figure left) Δx, Δx ′, Δy′ and
Δy are plotted versus the horizontal entrance point, axes
are in mm and mrad.

Figure 3: Same as Fig.2, but starting coordinates are varied
along a vertical phase space ellipse and plotted versus the
vertical entrance points in mm.

after passing the ID is shown in the figure, calculated by
the GF and by WAVE. Similarly in Fig. 3 the vertical co-
ordinates are evenly distributed on a vertical phase space
ellipse with x=20mm fixed. The agreement is in general
very good, beside a position offset visible in Fig. 3.

TRACKING RESULTS

For the optics simulation a 6x6 tracking code is writ-
ten. Sextupoles and rf-cavity are simple kick elements. The
dipoles are simulated in second order, applying the MAD
method as described in [10]. The GF for the insertion de-
vice is included.

A correction method for the UE112 is required to sup-
press the effect of the dynamic multipoles. This is simu-
lated by L-shims, placed between each second period as
2-dim field kicks. The effect of the shims is shown in Fig.
4, where the integrated kick accumulated by an electron per
passage of the ID in the horizontal plane is shown. The ini-
tial horizontal phase space positions are distributed on an
ellipse of 30 mm and 1.87 mrad axes. The unshimmed case
leads to large kicks of different signs for particles starting
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Figure 4: Horizontal kick in mrad per ID an electron re-
ceives as a function of horizontal displacement in mm.
Blue with shims, red: no shims.

with, e.g., xi = 0 and x′i-values of opposite signs. The
shimmed case shows a strongly reduced kick strength. If
unshimmed, the ID shows very nonlinear kicks.

Figure 5: Horizontal phase space plot of 1000 turns and in-
creasing horizontal starting amplitude at nominal momen-
tum. The vertical starting amplitude is always 1 mm. Left:
unshimmed case, right: shimmed case.

An example of the horizontal phase space is shown in
Fig. 5, with and without shim corrections. The shimming
leads to a gain in stable horizontal phase space, extending
to 30 mm. Without shims only half the range is stable. In
this simulation the starting value in the vertical plane was
1 mm. Derived from a frequency map analysis, shown in
Fig. 6, it seems to be advantageous, to slightly tune the har-
monic sextupoles to keep the tune spread caused by the ID
small. If unshimmed, the dynamical multipoles lead to an
intolerable large tune spread, already at half of the required
dynamic aperture. The working point was adjusted to avoid
major resonances. Finally, the correction results in a stable
dynamic aperture within the requested area. Including the
shims, the induced, small amplitude tune shift for ψ = π is
less than 0.02 in both planes (ID on/off).

We acknowledge the fruitful discussion with our colleagues
J. Feikes, A. Gaup, P. Kuske and W. Frentrup.
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