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Abstract 
   We investigate the transverse impedance of elliptical 
cross-section tapers.  Analytical estimates for the dipolar 
and quadrupolar components of the impedance at low 
frequency are obtained by extending a perturbation 
approach introduced by Stupakov. The perturbation 
theory results are compared to EM code GdfidL and are 
found to be in excellent agreement. 

INTRODUCTION 
   An important issue in the design of modern synchrotron 
light sources is the determination of the transverse 
impedance of vacuum chambers for small-gap undulators 
which have tapers going from one cross-section to 
another in a given length. Similar problems occur in the 
collimator design for high energy physics machines, as 
well as designs of other common transitions.  In typical 
cases of interest, the tapering is sufficiently gradual to be 
effective, the chamber height changes by a substantial 
factor, and the horizontal-to-vertical aspect ratio is large. 
   Yokoya has derived the low frequency transverse 
impedance of an axially symmetric tapered transition [1]. 
Later, Stupakov [2] used first-order perturbation theory to 
provide a new derivation of Yokoya’s result at zero 
frequency ( )0=k , based on the solution of electrostatic 
and magnetostatic problems. Using this technique, 
Stupakov [3] also determined the vertical impedance of a 
flat rectangular chamber of constant half-width w and 
varying half-height ( ) wzh << , resulting in impedance 
much larger than that for a round chamber of the same 
vertical profile. 
  Recently, we have used Stupakov's approach to calculate 
the horizontal and vertical impedances at 0=k  of an 
elliptical taper [4].  In the present paper, we extend our 
earlier work by determining the quadrupolar components 
[5] of the impedance. These components, only present in 
axially asymmetric structures, are due to forces 
proportional to the displacement of the trailing charge, 
unlike the dipolar impedance which depends on the 
displacement of the leading charge. The quadrupolar 
components are important as they contribute to incoherent 
tune shift, and typically improve beam stability through 
Landau damping. While quadrupolar impedances have 
been analyzed for the case of resistive wall [6] to our 
knowledge there are no previous analytical results 
determining the quadrupolar impedance arising from 
geometry variation of the vacuum chamber. 
   Since our previous publication [4], we have: improved 
our EM code calculations by switching to convex 
structures; extended our treatment to higher perturbation 
theory orders to clarify the applicability range; and 
determined the quadrupolar impedance.  

ANALYTICAL RESULTS 
   Stupakov’s [2] method involves solving inhomogeneous 
two-dimensional Poison equations.  Matching boundary 
conditions for a translation invariant (uniform) elliptical 
cross-section is most easily done using elliptic cylindrical 
coordinates ( )z,,θμ .  The contour surfaces of constant μ  
are confocal elliptical cylinders, while those of constant 
θ are confocal hyperbolic cylinders.  The confocal 
cylinder ρμ =  forms the inner beam pipe boundary, 
while the z-axis is directed along the chamber axis.  The 
relationship between Cartesian and elliptic coordinates is 
given by 
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where 2A is the distance between the foci.  The major and 
minor semi-axes of the elliptical cross-section are 

ρcoshAa =  and ρsinhAb = , and its eccentricity is 

given by 2 21 / 1/ coshe b a ρ= − = .  The limiting case of 
a circular cross-section of radius r is given by 

( )ρ−= exp2rA , with ∞→ρ .  The limit of 0→ρ , 
approximates a flat pipe ρAh 22 =  high by Aw 22 =  
wide.   
   In the case when the elliptical cross-section varies with 
z, it is generally not possible to introduce an orthogonal 
coordinate system that matches the cross-section at each 
value of z.  However, when the variation maintains a 
confocal structure, we can use the elliptic cylindrical 
coordinates introduced above, allowing ρ  to have a z-
dependence. The horizontal-to-vertical aspect ratio is 
given by ( ) ( ) ( )zzbza ρtanh/1/ =   and the constant A  is 

determined by ( ) ( )222 zbzaA −= .  The requirement for 
confocal variation allows arbitrary variation in one plane, 
e.g. arbitrary beam pipe half-height ( )zb .  The variation 
in the other plane is then fixed as soon as a is specified at 
any single value of z. 
   Consider the wakefield produced by a drive charge with 
transverse coordinates ( )dd yx ,  to be sampled by a test 
charge at transverse coordinates ( )tt yx , . To lowest order 
in the transverse coordinates this wakefield can be 
decomposed into the dipolar and quadrupolar parts in 
each plane [5]. Similarly, in the frequency domain the 
horizontal and vertical impedances are given by 
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Within first-order perturbation theory [4], we find 
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0Z is the free space impedance and 0=k  is assumed. 
   In the limit of a round pipe ( )∞→ρ , the dipolar 
impedances reduce to the result originally found by 
Yokoya [1], 
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and the quadrupolar impedance QZ  vanishes. 

   In the limit of a flat pipe ( )0→ρ , we derive 
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Note that in this limit, the horizontal dipolar and 
quadrupolar impedances have equal magnitude 2/roundZ  
but opposite signs.  From Eq. (2), we see that this implies 
that a trailing bunch displaced horizontally by the same 
amount as the drive bunch does not experience any force 
in a flat chamber. Eq. (6b) for yDZ is similar to that of a 

flat rectangular pipe result of [3] but is lower by π/8.  
   Impedance expressions presented above are the results 
for the first order perturbation theory, the lowest one to 
give non-vanishing values. To find out the range of 
validity of these results we have extended our treatment to 
higher orders. For arbitrary ellipticity, even the second 
order impedance formulas are very long. In the limiting 
case ( )0→ρ  of a smooth flat chamber, we found that the 
horizontal and quadrupolar impedance second order 
corrections are small for taper length l , if the average 
chamber height satisfies 2 2 1/avh <<l . In contrast, in 
order to assure that second order terms for the vertical 
dipolar impedance are small, it is additionally required 
that the chamber width satisfies 2 2 1/avw <<l .  
Therefore, the perturbation theory breaks down when the 
taper width is comparable to or larger than its length.  

    In the case of a round taper, we carried out a more 
detailed study of the contributions of the higher-order 
terms in the perturbation theory [7]. 

COMPARISON WITH GDFIDL 

 
Figure 1:  Geometry with principal dimensions in cm. 

   We now discuss calculations performed using code 
GdfidL [8] for the geometry of  Fig. 1, consisting of a 
uniform pipe with elliptical cross-section linearly tapered 
to another uniform elliptical pipe with a larger cross-
section confocal to the first pipe; the structure is then 
continued mirror symmetrically with respect to the middle 
of the center pipe. The center pipe is chosen long enough 
that we are in the regime of two non-interacting tapers.  
   The vertical and axial dimensions are fixed for all 
calculations. Both the outer and the inner pipes are then 
varied from round to approximately flat maintaining the 
confocal condition. In each case, we separately calculate 
the horizontal and vertical dipolar wake-potentials by 
displacing the 1 cm rms long drive bunch in the 
appropriate plane, or running it on axis for the 
quadrupolar case. We take advantage of the symmetry 
planes and perform the calculations for a quarter 
structure, x>0, y>0, enforcing electric boundary condition 
in the y=0 (x=0) plane and magnetic boundary condition 
in x=0 (y=0) plane when calculating vertical (horizontal) 
dipolar wake-potentials. Both boundaries were set to 
magnetic for quadrupolar wake calculations. To get the 
zero frequency impedance we integrated the wake-
potential over 2 m distance behind the drive bunch and 
normalized the result to the displacement of the driving 
(trailing) particle for the dipolar (quadrupolar) case.   
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Figure 2: Dipolar vertical impedance. 
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Figure 3: Dipolar horizontal  and quadrupolar impedances. 

   Transverse impedances found in this manner are shown 
in Figs. 2-3. They are normalized by the GdfidL values of 
dipolar impedance of axially symmetric pipe with the 
same vertical profile.  For the 0.4 mm step size used the 
GdfidL value for the round pipe (~1.8 kΩ/m) is quite 
close to 1.7 kΩ/m that follows from Eq. (5).  We plot this 
impedance vs. the ellipse aspect ratio always taken at the 
smallest cross-section (where the chamber is the most 
flat). GdfidL calculations of QZ  were done twice, with 
either vertical or horizontal trailing charge displacement; 
the results came out essentially the same.  
   Also plotted are the first order perturbation theory 
results from Eqs. (3a-c). For vertical impedance (Fig. 2) 
there is a good agreement with GdfidL up to aspect ratio 
of ~3 where 2 2/avw ≈l 0.17 and higher order terms 
become important. Horizontal and quadrupolar 
impedances (Fig. 3) exhibit good agreement for all aspect 
ratios, consistently with the gradually tapered structure in 
hand ( 2 2/avh ≈l 0.076). Interestingly, both xDZ  and QZ  
achieve their “flat limit” at rather low aspect ratio of ~2. 
Similar behaviour was found for resistive wall impedance 
in uniform pipes with elliptical cross-section (i.e. [6]). 
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Figure 4: Dipolar vertical wake potentials. 

 
   Additional insights come directly from the wake-
potentials calculated by GdfidL.  For the horizontal and 

quadrupolar cases these are basically proportional to the 
bunch shape, implying that impedance is essentially a 
constant inductance equal to that plotted in Fig. 3. For the 
vertical the situation is different as indicated in Fig. 4 
where we present wake-potentials from GdfidL for aspect 
ratios up to 64. Past aspect ratio of ~2 the wake potential 
starts widening much beyond the drive bunch shape, 
while its peak height saturates. As a result yDZ grows to 

substantial values (~10 roundZ for our geometry) before 
saturation, while the kick factor saturates at a much more 
modest level of ~ twice the round pipe value. This means 
that the vertical taper impedance implications for single 
bunch dynamics are far less severe than what would 
follow from Eq. (6b) or the result of [3].  

CONCLUSION 
   We derived analytical expressions for the low frequency 
transverse impedance of slow tapered structures with 
elliptical cross-section. Our results show excellent 
agreement with GdfidL. Apart from slow tapering 
( 2 2 1/avh <<l ), an extra condition ( 2 2 1/avw <<l ) is 
necessary for the validity of the vertical dipolar 
impedance expression obtained.  
   In the limit of flat structures, which is actually achieved 
at relatively low aspect ratios of ~2, the horizontal dipolar 
(quadrupolar) impedance equals half (minus half) the 
value of the transverse impedance of an axially symmetric 
structure with the same vertical profile variation. For the 
vertical impedance the scaling wZ yD ∝  predicted in [3] 

is observed for 2 2 1/avw <<l , while for wider tapers 
vertical impedance saturates. Furthermore, GdfidL 
simulations indicate that as the structure gets flatter most 
of the growth in yDZ  is due to long range wake, while 
the vertical kick factor saturates at about twice the value 
for the corresponding axially symmetric structure.  
   Finally, while our analytical approach assumes confocal 
variation of elliptical cross-section constba =− 22 , 
GdfidL results for all impedances are rather insensitive to 
horizontal variations. Therefore our results could 
approximate a case of arbitrary ellipse variation with z, by 
considering a confocal structure with b(z) matched 
everywhere and  a(z) matched at its minimum. 
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