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Abstract

Coherent Synchrotron Radiation (CSR) can severely
limit the performance of planned light sources and stor-
age rings which push the envelope to ever higher bunch
densities. In order to better simulate CSR, the formalism
of Saldin [E. L. Saldin, E. A. Schneidmiller, and M. V.
Yurkov, Nucl. Instrum. Methods Phys. Res., Sect. A
398, 373 (1997)] is extended to work at lower energies and
shorter length scales. The formalism is also generalized
to cover the case of an arbitrary configuration of multiple
bends.

INTRODUCTION

It is envisioned that future accelerators will call for
shorter, higher intensity beams. A possible limiting fac-
tor in these efforts is the increased energy spread due to
Coherent Synchrotron Radiation (CSR). In order to bet-
ter simulate these effects, this paper extends the formalism
of Saldin[1] to work at lower energies and shorter length
scales. The formalism developed here is also generalized to
cover the case of an arbitrary lattice configuration of bends
and drifts.

TWO PARTICLE INTERACTION

The analysis starts by considering two particles of charge
e following the same trajectory as shown in Figure 1. The
Lienard–Wiechert formula gives the electric field E(P ) at
the position of the kicked particle at point P and time t due
to the source particle at point P ′ and retarded time t′

E(P) =
e

γ2

L− Lβn′

(L −L · βn′)3
+

e

c2

L× [(L− Lβn′)× a′]
(L−L · βn′)3

(1)
It will be assumed that both particles have the same speed
β = v/c, and n′ and n are the unit velocity vectors for
the source and kicked particles respectively. In Eq. (1), L
is the vector from P ′ to P . The retarded time t′ is related
to t via t − t′ = L/c. At time t, the source particle has a
longitudinal position s′ and the longitudinal position of the
kicked particle at P is s. The distance z ≡ s− s′ between
the particles at constant time is

z = Ls − β L (2)

where Ls is the path length from P ′ to P . Generally, the
relativistic approximation β = 1 will be made. However,
some terms in 1− β � 1/2 γ2 will need to be retained.
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The first term on the right hand side of Eq. (1) has a 1/z 2

singularity at small distances. Following Saldin[1], this
singularity is dealt with by dividing the electric field into
two parts. The space charge component E SC, which con-
tains the singularity, is the field that would result if the par-
ticles where moving without acceleration along a straight
line. The CSR term, ECSR, is what is left after subtracting
off the space charge term

ESC ≡
e n

γ2 z2
, ECSR ≡ E −ESC (3)

The rate K ≡ dE/ds at which the kicked particle is chang-
ing energy due to the field of the source particle is

K ≡ KCSR + KSC = e n ·ECSR + e n ·ESC (4)

Following Saldin, the transverse extent of the beam will be
ignored in the calculation of KCSR. However, the inclusion
of the finite beam size will be needed to remove the singu-
larity in the calculation of KSC.

CSR CALCULATION

The source point P ′ and the kick point P will, in general,
not be within the same lattice element. Since the transverse
extent of the beam is being ignored, all elements will be
considered to be either bends or drifts.

In Figure 1, R is the bending radius and g = 1/R is the
bending strength of the element that contains the source
point P ′. The magnitude of the acceleration is a ′ � c2/R.
This element ends at point O. φ is the angle and d = R φ
is the path length between P ′ and O.

Between point O and the kick point P , di is the path
length of the ith element, i = 1, . . . , N−1, where N is the
number of elements in this region. For the last element dN

is the distance from the start of the element to point P . φ i is
the bend angle, Ri is the bend radius, and gi = 1/Ri is the
bend strength for the ith element. For a drift φi = gi = 0.
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Figure 1: A particle at point P ′ kicks a particle at point P .
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Figure 2: KCSR and φ as a function of z for a bend.

In Figure 1, (v, w) are the coordinates of point P with re-
spect to pointO with the v–axis parallel to the orbit’s longi-
tudinal ŝ axis at point O and the w–axis pointing upwards
towards the inside of the element containing the point P ′.
With the assumption that all bend angles are small, v and
w can be approximated by

v = ν1 − ν3 , and w = ω2 (5)

where

ν1 =
N∑

i=1

di , ω2 =
N∑

i=1

di

(
ψi +

1
2
gi di

)

ν3 =
N∑

i=1

di

(
1
2
ψ2

i +
1
2
ψi gi di +

1
6
g2

i d2
i

)
(6)

where ψi is the orientation angle at the entrance end of the
ith element: ψi =

∑i−1
k=1 φk. The above formulas are able

to handle negative bends (beam rotating clockwise). For a
negative bend Ri, gi and φi are negative while di = Ri φi

is always positive. The angle θ of the vector n with respect
to the v–axis is θ =

∑N
i=1 gi di. In terms of v and w, the

components of the vector L are

Lv = [ν1 + d]−
[
ν3 +

g2 d3

6

]
, Lw = ω2 −

g d2

2

L = [ν1 + d]−
[
ν3 +

g2 d3

6
− 1

8
(2 ω2 − g d2)2

ν1 + d

]
(7)

The path length is Ls = d + ν1. With Eq. (2) this gives

z =
ν1 + d

2 γ2
+

[
ν3 +

g2 d3

6
− 1

8
(2 ω2 − g d2)2

ν1 + d

]
(8)

Substituting the above equations in Eq. (1), and (3) gives

KCSR = 4 e2 γ4 τ2

{
g (τ2 − α2) (α− τ κ)

(τ2 + α2)3
+ (9)

τ2 − α2 + 2 τ α κ

(τ2 + α2)3

}
− e2

γ2 z2
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Figure 3: ICSR a function of z for a bend. The dashed line is
the large z approximation as given in Eq. (16).

where

α = γ2

(
ω2 + g d ν1 +

1
2

g d2

)
(10)

κ = γ (θ + g d) , τ = γ (d + ν1)

In the special case where points P and P ′ are within the
same bend, Eq. (9) reduces to (cf. Saldin[1] Eq. (32))

KCSR =
4 e2 γ4

R2

{
φ̂2/4− 1

2 (1 + φ̂2/4)3
+ (11)

1
φ̂2

[
1 + 3 φ̂2/4
(1 + φ̂2/4)3

− 1
(1 + φ̂2/12)2

]}

where φ̂ ≡ γ φ. Eq. (11) is valid for φ̂ > 0. For φ̂ < 0,
KCSR is, to a very good approximation, zero.

In the limit of small z, KCSR has a limiting value of

KCSR(z) � −4 e2 γ4

3 R2
for z � R

γ3
(12)

At large values of z, z is cubic in φ so that φ̂ �
(24 z/R)1/3. With this, Eq. (11) becomes

KCSR(z) � 4 e2

33/2 R2/3 z4/3
for z � R

γ3
(13)

KCSR(z) for a bend is plotted in Figure 2. KCSR changes sign
at z = 1.8 R/γ3. The long tail at z > 1.8 R/γ3 cannot be
neglected since the integral

∫
ds′KCSR(s− s′) is zero.

The fact that KCSR is highly peaked in amplitude near z =
0 can be problematic for simulations at ultra–relativistic
energies since the characteristic longitudinal distance be-
tween particles or mesh points needs to be less than R/γ 3.
One way of dealing with the peaked nature of K CSR is to
first consider the kick from a line of particles of density
λ(s) and then to integrate by parts

(
dE
ds

)

CSR

=
∫ ∞

−∞
ds′ λ(s′)KCSR(s− s′)

=
∫ ∞

−∞
ds′

dλ(s′)
ds′

ICSR(s− s′) (14)
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Figure 4: Comparison between Eq. (20) and an exact inte-
gration of Eq. (18).

where

ICSR(s− s′) = −
∫ s′

−∞
ds′′KCSR(s− s′′) (15)

ICSR is plotted in Figure 3 for a bend. The peaked nature of
KCSR has been smoothed over at the cost of having to deal
with a derivative of λ. It is not possible to evaluate the in-
tegral of Eq. (15) in closed form. However, for z � R/γ 3,
the approximation of Eq. (13) can be used with Eq. (11)
to calculate an explicit ultrarelativistic equation for ICSR[2].
For a bend this is

ICSR(z) =
−2 e2

31/3 R2/3

1
z1/3

for z � R

γ3
(16)

Eq. (16) is plotted in Figure 3.
While, in general, it is helpful to have explicit formulas,

for the purposes of evaluation within a simulation program
this is not needed. The alternative is to use an exact implicit
solution. Since Eq. (8) and Eq. (9) are rational functions,
Eq. (15) can be integrated to give

ICSR(s, s′) =
−2 e2 γ (τ + α κ)

τ2 + α2
+

e2

γ2 z
(17)

Eq. (17) is the main result of this paper. Using Eq. (17),
the integration of Eq. (14) in a simulation program can be
done via interpolation of Eq. (8). Eq. (17) has several ad-
vantages over equations like Eq. (16). Eq. (17) is applica-
ble at lower values of γ3z, That is, at lower energies and/or
smaller length scales. Additionally, Eq. (17) has no singu-
larity at small z, and it can be used to handle any combina-
tion of elements between the source and kick points.

SPACE CHARGE CALCULATION

The singularity at small z in the space charge term ESC

is removed by considering the finite transverse beam size.
This term is equivalent to the problem of calculating the
field given a static distribution of charges. It will be as-
sumed that at any longitudinal position the transverse pro-
file of the beam is Gaussian. Thus, a longitudinal slice of

the beam will produce an energy change for a particle at at
longitudinal offset z and transverse offset (x, y) from the
slice center of

KSC(z, x, y)=
∫ ∞

−∞

∫ ∞

−∞
dx′ dy′ ρ(x′, y′) (18)

e2 γ z

(γ2 z2 + (x− x′)2 + (y − y′)2)3/2

where ρ is the bi-Gaussian distribution

ρ(x′, y′) =
1

2 π σx σy
exp

[
− x′2

2 σ2
x

− y′2

2 σ2
y

]
(19)

A heuristic solution for Eq. (18) in the region of interest
(x � 3 σx and y � 3 σy) is

KSC =
e2 sgn(z)

σx σy exp
[

x2

2 σ2
x

+ y2

2 σ2
y

]
+

σ2
x+σ2

y

σx+σy
γ z + γ2 z2

(20)
where

sgn(x) =

{
1 x > 0
−1 x < 0

(21)

Eq. (20) is exact in the limit z = 0 and z → ∞, and is
an excellent approximation in the region in between. This
is illustrated in Figure 4, which shows KSC as a function
of z as computed from an integration of Eq. (18) and from
the approximate Eq. (20). The particular parameters cho-
sen for the computation are given in the figure. Two cases
were considered. One where the kicked particle is on-axis,
and the other where the kicked particle is displaced 1 σx

off-axis. As can be seen, Eq. (20) gives an excellent ap-
proximation to the longitudinal space charge kick.

CONCLUSION

A general implicit formula for the longitudinal kick due
to the coherent synchrotron radiation has been developed
for particles on a common orbit. This formalism will han-
dle any geometry of bends and drifts. For simulations, this
formula is to be preferred over the explicit ultra–relativistic
formula since the implicit formula does not have a singu-
larity at z = 0 and is applicable at lower particle energies
and smaller length scales.

Additionally, a heuristic formula for the longitudinal
space charge kick has been presented which takes into ac-
count any transverse displacements of the kicked particles.
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