Single Particle Line ar and \mathcal{N} online ar Dynamics
 Suntrai Cai
 Stanford Line ar Accelerator Center

$$
\text { July 7, } 2004
$$

The Ninth European Particle Accelerator Conference,
July 5-9, 2004, Lucerne, Switzerland

Requirements from Accelerator Pfysics

- Small and large circular accelerators (radius of 1 to 4000 meters)
- Low and figh energy ($100 \mathfrak{M e v}$ to 7Tev), transition energy
- Type of particles (electron, proton, and ions)
- Periodical system
- S-coordinate as independent variable, resonances
- Hill's equations, Courant-Synder parameters, and betatron tunes
- Intrinsic aberrations
- Chromatic effects, compensation using sextupoles
- Resonances driven by sextupoles, wiggler, space-charge, or beam-beam
- Practicalaberrations
- Misalignment of magnets, dynamical presentation of Euclide an group
- Magne tic errors, farmonics, and fringe field
- Prysics issues
- Closed orbit, geometric and cfromatic optics, modeling and correction
- Symplectic condition, nonline ar resonances, and dynamic aperture

Approximated Presentations for

 Magnetic Elements in Codes

Symplectic Conditions in Hamiltonian System

artificial damping or growth

$M \circ J \circ M^{T}=J$

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \text { (one-dimension) }
$$

M is the Jacobian matrix of transfer map and J is symplectic unit matrix.

Hamiltonian for a Sector Bend with Mutipoles in Cylindric al Coordinate

TEAPOT\&PTC\&SAD:
solvable

$$
H=-\frac{e}{c p_{0}} A_{s}(x, y)+\frac{x}{\rho}+\frac{x^{2}}{2 \rho^{2}}-\left(1+\frac{x}{\rho}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}} \quad \quad \text { (small ring) }
$$

TRACY\&DESPOT\&LEGO\&AT:

$$
H=-\frac{e}{c p_{0}} A_{s}(x, y)+\frac{1}{2}\left(\frac{x}{\rho}\right)^{2}-\frac{x}{\rho} \delta+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)} \quad \text { (large ring) }
$$

where A_{s} is given by the harmonic expansion:

$$
A_{s}(x, y)=-\operatorname{Re}\left(\sum_{n=1} \frac{1}{n}\left(b_{n}+i a_{n}\right)(x+i y)^{n}\right)
$$

- $\mathrm{A}_{\mathrm{s}}(\mathrm{x}, \mathrm{y})$ describes magnetic imperfection inside the body as well as many type of magnets such as quadrupole (b2)
- H can not be solved in general but can be split into solvable pieces

Second-Order Symplectic

Integrators

Separate Hamiltonian into two exactly solvable parts:

$$
H=H_{0}+H_{1}
$$

where $H_{0}=\frac{x}{\rho}+\frac{x^{2}}{2 \rho^{2}}-\left(1+\frac{x}{\rho}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}$ and $H_{1}=-\frac{e}{c p_{0}} A_{y}(x, y)$.
Approximation with symplectic integrators:

- Symmetric and both are second-order integrator but the first one is commonly used
- Derived from the Baker-Cambell-Hausdorf formula
- Becomes the exact solution at the limit of infinite number of segments
- Preserves symplectic condition during the integration

"TEAPOT" as a Second-Order Integrators in $\mathcal{H a m i l t o n i a n ~ S y s t e m ~}$

Separate H into three exactly solvable parts:

$$
\begin{array}{ll}
H_{d}=-\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}, & \text { drift } \\
H_{y}=-\frac{x}{\rho} \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}, \longleftarrow & \text { wedge (rotation in y axis) } \\
H_{k}=\frac{x}{\rho}+\frac{x^{2}}{2 \rho^{2}}-\frac{e}{c p_{0}} A_{s}(x, y) . \longleftarrow & \text { kick }
\end{array}
$$

Another type of second-order integrator:

$$
e^{-: H: L}=\prod_{i=1}^{n}\left[e^{-\frac{: H_{d} \dot{2}}{2} \Delta s} e^{-\frac{: H_{y}:}{2} \Delta s} e^{-: H H_{k}: \Delta s} e^{-\frac{: H_{y}:}{2} \Delta s} e^{-\frac{: H_{d} \dot{2}}{2} \Delta s}+O(\Delta s)^{3}\right]
$$

- Not explicitly depend on the global coordinate and easy to extend to vertical bends
- Not unique and there are other symmetric combinations as well
- Has a geometric interpretation:

L. Shachinger and R. Talman, Part. Accel. 22, 35 (1987)

High-Order Symplectic Integrators

Given a second-order integrator: $\mathrm{S}_{2}(\Delta \mathrm{~s})$, we can construct fourth-order integrator:

$$
S_{4}(\Delta s)=S_{2}\left(x_{1} \Delta s\right) S_{2}\left(x_{0} \Delta s\right) S_{2}\left(x_{1} \Delta s\right),
$$

where $x_{0}=-2^{\frac{1}{3}} /\left(2-2^{\frac{1}{3}}\right), x_{1}=1 /\left(2-2^{\frac{1}{3}}\right)$.

- For both the second and fourth order integrators, the result of integration always becomes exact at the limit that the number of segments approaches to infinity
- Fourth order integrator is not always more efficient than the second-order ones. It is more efficient to integrate quadrupole magnet. Usually, several segments are required.
R. Ruth, IEEE Trans. Nucl. Sci. Ns-30, 2669, (1983)
H. Yoshisa, Phys. Lett. A. 150, 262, (1990).

Truncated Power Series Alge Gra

 (M. Berz, Part. Accel.24, 109, 1989)Consider a Taylor series:

$$
f(z)=\sum_{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}=0}^{k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}<o r d e r} D_{k_{1}, k_{3}, k_{4}, k_{5}, k_{6}}^{k_{1}^{k_{1}}} p_{1}^{k_{2}} q_{2}^{k_{3}} p_{2}^{k_{4}} q_{3}^{k_{5}} p_{3}^{k_{6}}
$$

Properties:

$$
\begin{array}{ll}
D^{f+g}=D^{f}+D^{g} & \text { (derivatives of sum functions (f+g)) } \\
D^{\lambda f}=\lambda D^{f} & \text { (derivatives of scales function } \lambda \mathrm{f}) \\
D^{f \cdot g}=D^{f} \otimes D^{g} & \text { (derivative of function } \mathrm{fg})
\end{array}
$$

defined as if the multiplication of
two polynomials but truncated at the order
the n-th derivative:

$$
(f \cdot g)^{(n)}(x)=\sum_{i=0}^{n} \frac{n!}{i!(n-i)!} f^{(i)}(x) g^{(n-i)}(x)
$$

"Polymorpfic" Tracking in C++

Tracking phase vector

```
void Multpole::Kick(double l, double ir\hbaro, Ray of
    v) const {
    double v1, v3, v5;
    double 6x=0.0, 6y=0.0, 6yt=0.0;
    v1 = v(1);
    v3 = v(3);
    if (order >= 1) {
        6y=6n[order-1];
        bx = an[order-1];
    for (int j = order-1; j>0;j-.) {
        byt =v1 * 6y-v3 * 6x + 6n[j-1];
        bx =v3 * by +v1* bx + an[j-1];
        6y = 6yt;
        }
    }
    v(2) = = `*(6y-(v5-v1*irfo)*irfo);
    v(4) += { * }6\chi\mathrm{ ;
    v(6) += { * irfo * v1;
}
```


Tracking a map

```
void Multpole::Kick\double l, double ir ho, Map
    *v) const {
    DA v1,v3,v5;
    DA 6x=0.0,6y=0.0, 6yt=0.0;
    v1 = v(1);
    v3 = v(3);
    if (order>=1){
    6y=6n[order-1];
    6x = an[order-1];
    for(int j =order-1; j>0;j-.) {
        byt =v1* 6y-v3 * 6x + 6n[j-1];
        bx =v3 * 6y +v1* bx +an[j-1];
        6y = 6yt;
        }
    }
    v(2) = = `*(6y-(v5-v1*irfo)*irfo);
    v(4) += l * 6 x;
    v(6) += { * irfoo * v1;
}
```


Courant-Snyder Parameters

One-turn matrix:
Rotation matrix:

$$
M=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right) \quad R=\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)
$$

We have:

$$
M=A \circ R \circ A^{-1}
$$

where A^{-1} is a transformations from physical to normalized coordinates:

$$
A^{-1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right), A=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
\frac{-\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)
$$

However, the transformation is not unique: $A=A \circ R(\psi)$ will do the job as well.

Line ar Lattice Propagation

lattice functions at location 2:

$$
\beta=\tilde{A}_{11}^{2}+\tilde{A}_{12}^{2}, \alpha=-\left(\tilde{A}_{11} \tilde{A}_{21}+\tilde{A}_{12} \tilde{A}_{22}\right), \gamma=\tilde{A}_{21}^{2}+\tilde{A}_{22}^{2}
$$

phase advance: $\delta \psi_{12}=\tan ^{-1} \tilde{A}_{12} / \tilde{A}_{11}$
Extending to coupled lattice: Y. Cai, Phys. Rev. E. 68, 036501 (2003)

Nonline ar Normal Form

A nonlinear Taylor map can be normalized as well:

$$
\boldsymbol{\mathcal { M }}(J, \psi, \delta)=\boldsymbol{A t}^{-1}(J, \psi, \delta) \circ \exp (-: \mathcal{H}(J, \delta):) \circ \boldsymbol{\mathcal { A }}(J, \psi, \delta)
$$

and
tune, chromaticity, detuning terms

where J and ψ are action-angle variables and δ is the relative momentum deviation.
E. Forest, M. Berz, and J. Irwin, P.A. 24, p91 (1989)

\mathcal{N} online ar Chromaticity in \mathcal{H} igh

 Energy Ring of PEP-II

High-Order Chromatic Optics Ulsing \mathcal{N} (ormal Form

$v_{y}(\delta)$

0.63799902339110182
$0.17158413929160805 \mathcal{E}-03$
136.89736397776215
-21222.567788552446
466110.23264129437
16474262.996298835
-18553799074.778057
7485639719025.4414

$\beta *_{y}(\delta)$

1.49929844883925460 E-02
$1.63912178521324781 \mathrm{E}-01$
$1.42281439147605315 \mathcal{E}+01$
2.09846852191739163 E+03

- $1.30051472332955454 \mathcal{E}+04$
$1.27799196832761690 \mathcal{E}+07$
$1.53322278915590271 \mathcal{E}+07$
-1.24725018999774094E+11
-9.77506834712234766E+12
$3.31928901269866650 \mathcal{E}+15$
$-7.79515743334024300 \mathcal{E}+15$
- A powerful extension to Harmon: arbitrary order of $\delta=\Delta \mathrm{p} / \mathrm{p}$ including $\mathrm{x}-\mathrm{y}$ coupling
- Can have other parameter dependency, such as the strength of sextupoles
- Uniform analysis for both linear and nonlinear lattice. Easy to implemented
- Accurate high derivatives because of TPSA or DA technique

Tune Footprint for the Low Energy Ring ($v_{x}=38.5125, v_{y}=36.5639$)

- Tune footprints
calculated witf normal form or wittr direct tracking agree well in the main stable region
- Resonance structure is not seen in the normal form approact Gecause it tries to smootr out the resonances

using LEGO\&LIELIB

normal form

using LEGO\&NAFF

tracking

H.S. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975 (1993)

Single Lie Presentation for OneTurn Map in Circular Accelerator

A single Lie presentation:

```
M(J,\psi,\delta)=\boldsymbol{A},-1}(J,\psi,\delta)\circ\mathcal{R}(J)\operatorname{exp}(:f(J,\psi,\delta):)\circ\mathcal{A},(J,\psi,\delta
linear normalization rotation
```

Nonlinear single Lie factor:

$$
f(J, \psi, \delta)=\sum_{\vec{m}, \vec{n}, p}\left(2 J_{x}\right)^{\frac{n_{x}}{2}}\left(2 J_{y}\right)^{\frac{n_{y}}{2}} \delta^{p}\left[a_{\vec{m}, \vec{n}, p} \cos \left(m_{x} \psi_{x}+m_{y} \psi_{y}\right)+b_{\vec{m}, \vec{n}, p} \sin \left(m_{x} \psi_{x}+m_{y} \psi_{y}\right)\right]
$$

- include both resonance driving terms and detuning terms ($\mathrm{m}_{\mathrm{x}}=\mathrm{m}_{\mathrm{y}}=0$)
- can be uses for tracking with multiple Poisson brackets (nPB)
- has been coded by Yiton Yan in C++: Zlib

A $4^{\text {th }}$ Order Resonance near $\mathcal{H a l f}$ Integer $4 \mathrm{~V}_{\chi}=154$ in (LER)

single-resonance map

- $10^{\text {th }}$ order Taylor map is extracted from the design lattice of the Low Energy Ring in PEP-I I
- $4^{\text {th }}$ order resonance driving-term and a detuning term are taken out from the single Lie representation for a single turn
- Positions of fixed points and the width of resonance are computed analytically and iterations of the map is showed on the left
- Agreement between a simple perturbation theory and the direct tracking is about 15%

Smoothed and truncated Hamiltonian ($\mathrm{v}=0.5125$):

Dynamics Aperture of LER with Syncfrotron Oscillations

Dynamics aperture with synchrotron oscillation is near the separatrix of the $4^{\text {th }}$ order resonance we fiave seen when the syncfrotron oscillation is turned off. In this simple but realistic case, when a single and is olated resonance dominates, the dynamic aperture can be estimated using nonline ar transfer map and perturbation tfeory without tracking. Can we do better?

Dynamic Aperture of SPEAR3

SPEAR-3 (v.78): with machine errors, 6 seeds Wigglers off
$\mathrm{ex}=20 \mathrm{e}-9, \mathrm{ex} / \mathrm{ey}=2, \mathrm{Qx}=14.19, \mathrm{Qy}=5.23$
beta $-\mathrm{x}=10.04$, beta $-\mathrm{y}=4.33$
$\mathrm{dp} / \mathrm{p}=0$ (solid blue), 3% (dash red)
solid green: 10 sigma fully coupled beam size 09-29-99

Dynamic Aperture

- Tracked witf LEGO
- Misalignments
- Strengtiferrors
- Multipole errors
- Orbit steering
- Coupling correction
- Witf syncfrotron oscillation
- On and off momentum
Y. Nosochkov and J. Corbett, SLAC-PUB-7965, 1998

$$
\begin{gathered}
\text { Me asured Dynamic Aperture vs. } \\
\Delta p / p \text { at SPEAR3 }
\end{gathered}
$$

- Dynamic aperture measured with single injection kicker for varying rf frequency.

Courtesy of J. Safranek, Theory club talk at SLAC, April, 2004

Long-Term $\operatorname{Dynamic}$ Aperture

Survival plot for SSC

- A million turns whicfis about one tenth of the injection period is tracked
- All magne tic errors are included in the lattice
- Iracking witf element-byelement using symplectic integrators in $\mathcal{L E G O}$
- Syncfrotron period defines the boundary betweenthe sfort-term and long-term stability of the particle.

Coferently Excited Betatron Motion and $\mathcal{T u r n - b y - \mathcal { T u r n d a t a }}$

11-DEC-03 13:27:37

- Beam excited at eigen frequency in x or y
- Equilibrium reached due to radiation damping or decoference
- Take turn-by-turn reading at all beam position monitors up to 1024 turns
- The phase advances Getween the beam position monitors can be accurately measured
J. Borer, C. Bovet, A. Burns, and G. Morpurgo, Proc. The 3rd EPAC, p1082 (1992)

In addition, Four Eigen Orbits

Extracted \mathcal{U} sing $\mathcal{F F T}$

- These orthogonal orbits are the Fourier transforms of the turn-by-turn readings of beam position monitors at the driving frequency. Since the peak in the spectrum can be located accurately, they can be measured precisely as well.

R-Matrix Elements Derive d from

 Four Orthogonal Orbits$$
\begin{aligned}
& R_{12}^{a b}=\left(x_{1}^{a} x_{2}^{b}-x_{2}^{a} x_{1}^{b}\right) / Q_{12}+\left(x_{3}^{a} x_{4}^{b}-x_{4}^{a} x_{3}^{b}\right) / Q_{34} \\
& R_{14}^{a b}=\left(y_{1}^{a} x_{2}^{b}-y_{2}^{a} x_{1}^{b}\right) / Q_{12}+\left(y_{3}^{a} x_{4}^{b}-y_{4}^{a} x_{3}^{b}\right) / Q_{34} \\
& R_{32}^{a b}=\left(x_{1}^{a} y_{2}^{b}-x_{2}^{a} y_{1}^{b}\right) / Q_{12}+\left(x_{3}^{a} y_{4}^{b}-x_{4}^{a} y_{3}^{b}\right) / Q_{34} \\
& R_{34}^{a b}=\left(y_{1}^{a} y_{2}^{b}-y_{2}^{a} y_{1}^{b}\right) / Q_{12}+\left(y_{3}^{a} y_{4}^{b}-y_{4}^{a} y_{3}^{b}\right) / Q_{34}
\end{aligned}
$$

where a and 6 are indices for the locations of the beam position monitors, Q_{12} and Q_{34} are globalinvariance of the orbits. For generalorbits, the relationship is much more complicated.

BPM Gains and Couplings

$\left(\begin{array}{l}\boldsymbol{\mathcal { R }}_{12}^{a b} \\ \boldsymbol{\mathcal { R }} \boldsymbol{R}_{14}^{a b} \\ \boldsymbol{\mathcal { R }}{ }_{32}^{a b} \\ \boldsymbol{\mathcal { R }}_{34}^{a b}\end{array}\right)=\left(\begin{array}{cccc}g_{x}^{b} g_{x}^{a} & g_{x}^{b} \theta_{x y}^{a} & \theta_{x y}^{b} g_{x}^{a} & \theta_{x y}^{b} \theta_{x y}^{a} \\ g_{x}^{b} \theta_{y x}^{a} & g_{x}^{b} g_{y}^{a} & \theta_{x y}^{b} \theta_{y x}^{a} & \theta_{x y}^{b} g_{y}^{a} \\ \theta_{y x}^{b} g_{x}^{a} & \theta_{y x}^{b} \theta_{x y}^{a} & g_{y}^{b} g_{x}^{a} & g_{y}^{b} \theta_{x y}^{a} \\ \theta_{y x}^{b} \theta_{y x}^{a} & \theta_{y x}^{b} g_{y}^{a} & g_{y}^{b} \theta_{y x}^{a} & g_{y}^{b} g_{y}^{a}\end{array}\right)\left(\begin{array}{l}\mathrm{R}_{14}^{a b} \\ \mathrm{R}_{32}^{a b} \\ \mathrm{R}_{34}^{a b}\end{array}\right)$
where g_{x}, g_{y} are gains and $\theta_{x y}, \theta_{y x}$ are cross-coupling between x and y .

Measured

β Beating correction for the High

 Energy Ring (November 4, 2003)

implemented

Correction of Gains and coupling

Summary and Conclusion

- Canonical integrators using together witf the truncated power series provide us a powerfuland yet simple scheme for the tracking and analysis of single particle in circular accelerators. It fas intrinsically inferited consistency between the tracking and its very order-order map.
- TEAPOT can be considered as an application of symplectic integrators, whicf make it applicable to non-planar accelerators.
- Nonline ar normalform can be applied to compute the cfromatic lattices order-by-order with respects to d to an arbitrary order. This is extension to $\mathcal{H A R S O} \mathcal{N}$.
- Dynamic aperture simulated by tracking is reliable within 20% compared with the experimentalmeasurements provided the accurate inputs of mackine errors.
- Smootfed and truncated Hamiltonian can be derived from the one. turn map and is use ful way to understand the resonances in circular accelerators.
- Similar to the accurate tune measurement, opticalmeasurement based on cofierently excited orbits and frequency analys is fas sfown its advantages in accuracy and simplicity when it applies to fighly coupled rings

