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Requirements from Accelerator
Physics

Small and large circular accelerators (radius of 1 to 4000 meters)
— Low and high energy (100Mev to 7Tev), transition energy
- Type of particles (electron, proton, and ions)
Periodical system
- S-coordinate as independent variable, resonances
— Hill's equations, Courant-Synder parameters, and betatron tunes
Intrinsic aberrations
- Chromatic effects, compensation using sextupoles
— Resonances driven by sextupoles, wiggler, space-charge, or beam-beam
Practical aberrations
- Misalignment of magnets, dynamical presentation of Euclidean group
- Magnetic errors, harmonics, and fringe field
Physics issues
— Closed orbit, geometric and chromatic optics, modeling and correction
— Symplectic condition, nonlinear resonances, and dynamic aperture



Approximated Presentations for
Magnetic Elements in Codes

Lie factors g igfr a'fei| e engine in MARYLIE (A. Dragt)
* violates symplecticity when evaluates

Dragt-Finn

n (Z)  engine in TRANSPORT, MAD, COSY
d‘l (K. Brown and M. Berz), simple R-matrix
[ * but high-order one violates symplecticity

Taylor map

TPSA

. HO —=As _. As _Hoips
Canonical I Ie Hyasg 2
Integrator

 engine in TEAPOT, SAD, TRACY, LEGO,
PTC (E. Forest, R. Ruth, and K. Hirata)

e preserves symplecticity

 simple and based on several known solutions

« emphasis on numerical process




Symplectic Conditions In
Hamiltonian System

artificial darpping or gro‘wth

© 6Morder Taylor Map pE = « gt order Taylor Map
- +  LEGO 1

+  LEGO

p,(mrad)

1 -1 -0.5 4] 0.5 1
yimm)

J =(O 1} (one-dimension)
-1 0

M Is the Jacobian matrix of transfer map and
J Is symplectic unit matrix.



Hamiltonian for a Sector Bend with
Mutipoles in Cylindrical Coordinate

TEAPOT&PTC&SAD: — solvable
H =—%A$(x, y) + (small ring)
0
TRACY&DESPOT&LEGO&AT: paraxial approximation
v 2 2
— . € - L 2 L px py H
H = o A (X, y)+ =() > (1) (large ring)
where A is given by the harmonic expansion: ¥z " cyclotrdn
AL(X,¥) = = Re( 3 (b, +ia,)(x + iy)") ety
n=1 p
» A(X,y) describes magnetic imperfection inside ) 0 |

the body as well as many type of magnets such i X
as quadrupole (b2) ]
 H can not be solved in general but can be split

into solvable pieces




Second-Order Symplectic
Integrators

Separate Hamiltonian into two exactly solvable parts:
H =H,+H,

X X

where H, ==+ —(1+1) 1+08)° — pZ—p? H—_ %
0T T p\/ y and H, Cp)Ag(X,y),

Approximation with symplectic integrators:

. . . . HO : . _:H :AS
e—.H.L=H e—.H.As=H [e 2 e—.Hl.Ase'z +O(AS)3]

ws

.e
s

ws

exact propagate ___"___kick residual

OI’ i :H-..l: TH l

. . L . . d - . : - A
e—.H.L — H e—.H.As — H [e 2 e—.Ho.Ase 2 S+O(AS)3]
i=1 i=1

« Symmetric and both are second-order integrator but the first one is commonly used
e Derived from the Baker-Cambell-Hausdorf formula
» Becomes the exact solution at the limit of infinite number of segments

* Preserves symplectic condition during the integration



“TEAPOT” as a Second-Order
Integrators in Hamiltonian System

Separate H into three exactly solvable parts:
Hy=-J@+8)2-pi-p2, « drift

H, = —%\/(“ §)" = Pi- Py« wedge (rotation in y axis)

X X 2 e

H, = —+ — A (X, Y). I
=t e MY Kick

Another type of second-order integrator:

_:Hid:AS _:Hiy:AS LAS _hA

M- A . . - S
et =TJle 2 e 2 e™™e 2 e 2 +0(As)’]
i=1

 Not explicitly depend on the global coordinate and easy to extend to vertical bends
» Not unique and there are other symmetric combinations as well
» Has a geometric interpretation: 60

elements
of Euclidean

group

kicking plane

L. Shachinger and R. Talman, Part. Accel. 22, 35 (1987)



High-Order Symplectic
Integrators

Given a second-order integrator: S,(As), we can construct
fourth-order integrator:

S,(As) =S, (XAS)S, (X,AS)S, (X,AS),
1 1 1

where x, =-23/(2-283),x, =1/(2-23).

 For both the second and fourth order integrators, the result of integration
always becomes exact at the limit that the number of segments approaches
to infinity

 Fourth order integrator is not always more efficient than the
second-order ones. It is more efficient to integrate quadrupole magnet.
Usually, several segments are required.

R. Ruth, IEEE Trans. Nucl. Sci. Ns-30, 2669, (1983)
H. Yoshisa, Phys. Lett. A. 150, 262, (1990).



Truncated Power Series Algebra
(M. Berz, Part. Accel. 24, 109, 1989)

Consider a Taylor series:

ki +K, +k3+k, +ks5 +kg <order
Ky Kz mKa ~ K5 1 Ke

f(z)= D DMk ko ke ks ke Oy Py 0y° P3O P
k11k21k31k41k51k620

Properties:
Df+9 _ Df + DY (derivatives of sum functions (f+g))
D/ﬁ — 1D f (derivatives of scales function Af)

D9 =D" ® D9 (derivative of function fg)

VN defined as if the multiplication of

two polynomials but truncated at
the order

the n-th derivative:  (f.g)™(x)= iﬁf D(x)g" " (x)
i—o 1:UT—1):



Tracking phase vector

void Multpole::Kick(double |, double irho, Ray &

V) const {
double v1, v3, v5;
double bx=0.0, by=0.0, byt=0.0;

vl = v(1);
v3 = v(3);

if (order>=1){
by = bn[order-1];
bx = an[order-1];
for (int j = order-1; j > 0; j--) {
byt = vl * by - v3 * bx + bn[j-1];
bx =v3 * by +vl* bx +an[j-1];
by = byt;
}
}

v(2) -=1* (by - (v5-v1*irho)*irho);
v(4) +=1 * bx;
v(6) +=1* irho * v1,

“Polymorphic” Tracking in C++

Tracking a map

void Multpole::Kick(double I, double irho, Map
& V) const {

DA vl, v3, v5;
DA bx=0.0, by=0.0, byt=0.0;

vl =v(1);
v3 = v(3);

if (order>=1){
by = bn[order-1];
bx = an[order-1];
for (int j = order-1; j > 0; j--) {
byt = vl * by - v3 * bx + bn[j-1];
bx =v3 * by +vl* bx +an[j-1];
by = byt;
}
}

v(2) -= 1 * (by - (v5-v1*irho)*irho);
v(4) +=1 * bx;
v(6) +=1* irho * v1,




Courant-Snyder Parameters

One-turn matrix: Rotation matrix:
(cosu+asing Bsinu . :( cosy  sin ,Uj
- —ysinu cosu—asinu —sinu  cosu

We have: 1
M=AocR-A

where Al is a transformations from physical to normalized

coordinates:
1

— 0
o] 8 [ﬁ 2]

B ) W
However, the transformation is not unigue: A= Ao R(W)
will do the job as well.




normalized ring

physical ring

lattice functions at location 2:

,B = Au+ Ap,o = —(A11 Aa+ A Ax ), Yy = Ax+ Ax

phase advance: Swr,, = tan™ Acl Au

Extending to coupled lattice: Y. Cai, Phys. Rev. E. 68, 036501 (2003)




Nonlinear Normal Form

A nonlinear Taylor map can be normalized as well:
I w.8)=c% (I, w.5)cexp(—:H(I.8):)o (I, w.5)

Y

and tune, chromaticity, detuning terms

).y, 0)=exp(: F y(J.¥,0))...exp(: F 5(J. ¥, 0) )%, (I, W) #, (9)

resonances lattice functions dispersion

where J and y are action-angle variables and o is
the relative momentum deviation.

E. Forest, M. Berz, and J. Irwin, P.A. 24, p91 (1989)




B(0) = /111(5)2 + Ar (5)2

Nonlinear Chromaticity in High
Energy Ring of PEP-11

Tow methods: normal form
using LIELIB or numerical
In LEGO agree well

10t order Taylor map used
for the normal form
analysis

Transformation from
physical to normal
coordinates becomes a
function of 6=Ap/p: A*(d)
but the same formula
applies

obtained from analysis of nonlinear normal form
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High-Order Chromatic Optics
Using Normal Form

v,(3)

0.63799902339110182

-0.17158413929160805E-03

136.89736397776215

-21222.567788552446
-466110.23264129437

16474262.996298835

-18553799074.778057

7485639719025.4414

B,(0)

1.49929844883925460E-02

-1.63912178521324781E-01

1.42281439147605315E+01

-2.09846852191739163E+03
-1.30051472332955454E+04

1.27799196832761690E+07
1.53322278915590271E+07

-1.24725018999774094E+11

-9.77506834712234766E+12
3.31928901269866650E+15
-7.79515743334024300E+15

A powerful extension to
Harmon: arbitrary order of
O0=Ap/p including x-y
coupling

Can have other parameter
dependency, such as the
strength of sextupoles

Uniform analysis for both
linear and nonlinear lattice.
Easy to implemented

Accurate high derivatives
because of TPSA or DA
technique



Tune Footprint for the Low Energy
Ring (v,=38.5125, v,=36.5639)

using LEGO&LIELIB
* Tune fOOtprlntS | - — =i
calculated with normal :
form or with direct

tracking agree well in

= E

| e

“ normal
— form

the main stable region = —
e Resonance structure is o "'
not seen in the normal SiNg LEGQ%NAFF

form approach T _
because It tries to -~ tracking
smooth out the
resonances

H.S. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975 (1993)



Single Lie Presentation for One-
Turn Map In Circular Accelerator

A single Lie presentation:

M. w.8)=cF (3.y.3)o RII)exp(: AI.w.8) :)° A, (I.1.3)

| T

linear normalization rotation

Nonlinear single Lie factor:

f (‘] ’ l//’ é‘) = Z (ZJX)ZX (2‘] y)zé‘p[arﬁ,ﬁ,p COS(le//X + myl//y) + bm,ﬁ,p Sin(mxl/jx + myl//y)]
m,i, p
* Include both resonance driving terms and detuning terms (m,=m,=0)

e can be uses for tracking with multiple Poisson brackets (nPB)
* has been coded by Yiton Yan in C++: Zlib

Y.T. Yan, J. Irwin, and T. Chen, Part. Accel. 55, 263 (1996).



A 4™ Order Resonance near Half
Integer 4v, =154 In (LER)

element-by-element tracking (LEGO) 10t order Taylor map is extracted from
anf . . . . ‘ _ the design lattice of the Low Energy Ring
in PEP-11
e 4% order resonance driving-term and a

detuning term are taken out from the
single Lie representation for a single turn

e Positions of fixed points and the width of
resonance are computed analytically and
iterations of the map is showed on the

0

)
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e

00t

002 p I | | | \ ] Ieft
WE R e x{ﬁu e u W« Agreement between a simple perturbation
single-resonance map }goe/ory and the direct tracking is about

0

02r

1 Smoothed and truncated Hamiltonian (v=0.5125):
H=vl+a(J)+ f(J)cos(my —nb)
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without synchrotron oscillations
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Dynamics Aperture of LER with
Synchrotron Oscillations

Dynamics aperture with
synchrotron oscillation is
near the separatrix of the
4™ order resonance we
have seen when the
synchrotron oscillation is
turned off. In this simple
but realistic case, when a
single and isolated
resonance dominates, the
dynamic aperture can be
estimated using nonlinear
transfer map and
perturbation theory
without tracking. Can we do
better?



Dynamic Aperture of SPEARS3

SPEAR-3 (v.78): with machine errors, 6 seeds

et wxar=2, & = 1416, by= 528 e Tracked with LEGO

beta—x = 10.04, beta—y = 4.33
dp/p = 0 (solid blue), 3% (dash red)

faig e Loss. Sl coeled e sias e Misalignments
I e Strength errors
e Multipole errors
e Orbit steering
e Coupling correction

e With synchrotron
oscillation

e On and off momentum

05 F

Initial Y—amplitude (cm)
[—
o
|

-3 —2 —] 0 1 2 3

Initial X—amplitude (cm)

Y. Nosochkov and J. Corbett, SLAC-PUB-7965, 1998



Measured Dynamic Aperture vs.
Ap/p at SPEAR3

o Dynamic aperture measured with single injection
kicker for varying rf frequency.

3(}] Dyramic aperture al | &m betar Oynzmic aperiure =t 10 mbetax

N ~r e g™

i i i
oo 0.0 [ D

-Duhﬁ?fp (B} oz 0-04 _0104 -0.03 -RaE o F‘IA?p oo mo2 n 0 -{]4 Lell] ]

] i i
=005 0.04 -0n3 4.0z

_0.04

Courtesy of J. Safranek, Theory club talk at SLAC, April, 2004



10*
10°k

B8

short-term

A million turns which is
about one tenth of the
Injection period is tracked

All magnetic errors are
Included in the lattice

Tracking with element-by-
element using symplectic
Integrators in LEGO

Synchrotron period defines
the boundary between the
short-term and long-term
stability of the particle.



Coherently Excited Betatron
Motion and Turn-by-Turn data

e Beam excited at eigen
frequency in x or y

e Equilibrium reached due to
radiation damping or

P2BPMLER BEMS PROB 2012

decoherence
e Take turn-by-turn reading
i at all beam position
E monitors up to 1024 turns

= « The phase advances

1.0 — between the beam position

S S - monitors can be accurately
measured

TURN WM TS=ANY  POL=ANY  VETQ DISABLED VD= 0 VBUS=NON

11-DEC-03 13:27.37

J. Borer, C. Bovet, A. Burns, and G. Morpurgo, Proc. The 3" EPAC, p1082 (1992)



In addition, Four Eigen Orbits
Extracted Using FFT

horizontal vertical
4 1
2 - 4
< o P e |real \
2o 100 200 300 400 o 100 200 300 400 mOde 1
5 1
o 4
oy | o e |mag|nary
_1 - 4
-5 -2
o 100 200 300 400 o 100 200 300 400
1 2
° ' |
- WMWM\/\,\/\A/VWMMNW 2™ 0 WWWAWWWM { rea V\
_1 - 4
25 100 200 300 400 25 100 200 300 400 mOde 2
1 1
L 05} ] . . . /
=~ 5 MWWM/MN\MN\ﬂ\/w\/\mWW\/W\AMA - = | mag : nary
—-0.5 -1
o 100 200 300 400 0 100 200 300 400
_.BPM Sequence number o .BPM Sequence number

BPM Sequence number BPM Sequence number

 These orthogonal orbits are the Fourier transforms of the turn-by-turn
readings of beam position monitors at the driving frequency. Since the peak in
the spectrum can be located accurately, they can be measured precisely as well.



R-Matrix Elements Derived from
Four Orthogonal Orbits

5 = (X% =X5X ) Qy +(X5%, —X;%3)/ Qy

Zb — (fog _ygxlb)/Qm +(y§‘xff o YZ‘X:?)/QM
Rz = 04y, =X Y1) 1 Q + (X5 Y, =X, ¥3) 1 Qs
Rer = (Y1 Ys = Y3 ) 1 Qu+ (Y5 Ys —Yi¥s) Qs
where a and b are indices for the locations of the beam

position monitors, Q,,and @, are global invariance of the

orbits. For general orbits, the relationship is much more
complicated.




BPM Gains and Couplings

0°g® gre: 6bgd 667 (R

Xy~ Xy 12
b Ha b @ b pa b @ ab
g X eyx g X g y exy eyx ny g y R 14
b ~a b na b o2 b Ha ab
ny g X nyexy g y g X g yexy R 32

b na b a b na b 2 ab
\d‘-34) \nyeyx nygy gyeyx gygy)\RBM

where g,, g, are gains and 6,,, 6,, are
cross-coupling between x and y.

x = gXX+9ny<>-
e — , - oy 0, -

&




Local Coupling in the LER

(October 20, 2003)

06 f ' ' : ' ' -
g04 ’ - whole
c 5 -
” - r'ng
= =
.@1 2 -0 5 .
= 20p B, =043823 degree = 20} 8,=-33.9233 degree_
L @ :
o o _uu.h——ﬂ' |
] R I B near the
= £ : interacti
¥ -20 -20
-1 -05 0 0.5 1 - -05 0 05 1 In eI‘aC 10N
06 06 point
04 (b/a), =0.01305 o4l (b/a) = 034109
g | °. q
<02 Q <02
u L +h.|‘! ﬂ o= Lo i ” ’T
-1 -05 0 0.5 1 -1 -05 0 05 1



B Beating correction for the High
Energy Ring (November 4, 2003)

-500

0 500 1000 1500

500 1000 1500
Distance(m)

measured

prediction

Implemented



Correction of Gains and coupling

1.5 T T T T corrected
— before

X gain

Y to X

XtoY

Y gain

0 50 100 150 200 250 300
BPM Sequence number



Summary and Conclusion

e Canonical integrators using together with the truncated power
series provide us a powerful and yet simple scheme for the tracking
and analysis of single particle in circular accelerators. It has
intrinsically inherited consistency between the tracking and its
very order-order map.

e TEAPOT can be considered as an application of symplectic
Integrators, which make it applicable to non-planar accelerators.

* Nonlinear normal form can be applied to compute the chromatic
lattices order-by-order with respects to d to an arbitrary order.
This is extension to HARMON.

» Dynamic aperture simulated by tracking is reliable within 20%
compared with the experimental measurements provided the
accurate inputs of machine errors.

e Smoothed and truncated Hamiltonian can be derived from the one-
turn map and is useful way to understand the resonances in circular
accelerators.

e Similar to the accurate tune measurement, optical measurement
based on coherently excited orbits and frequency analysis has
shown its advantages in accuracy and simplicity when it applies to
highly coupled rings



