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Requirements from Accelerator 
Physics

• Small and large circular accelerators (radius of 1 to 4000 meters)
– Low and high energy (100Mev to 7Tev), transition energy
– Type of particles (electron, proton, and ions)

• Periodical system
– S-coordinate as independent variable, resonances
– Hill’s equations, Courant-Synder parameters, and betatron tunes

• Intrinsic aberrations
– Chromatic effects, compensation using sextupoles
– Resonances driven by sextupoles, wiggler, space-charge, or beam-beam

• Practical aberrations
– Misalignment of magnets, dynamical presentation of Euclidean group
– Magnetic errors, harmonics, and fringe field 

• Physics issues
– Closed orbit, geometric and chromatic optics, modeling and correction 
– Symplectic condition, nonlinear resonances, and dynamic aperture



Approximated Presentations for  
Magnetic Elements in Codes
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• engine in MARYLIE ( A. Dragt)
• violates symplecticity when evaluates

Lie factors

Taylor map
• engine in TRANSPORT, MAD, COSY 

(K. Brown and M. Berz), simple R-matrix
• but high-order one violates symplecticity

Canonical
integrator

• engine in TEAPOT, SAD, TRACY, LEGO, 
PTC (E. Forest, R. Ruth, and K. Hirata)

• preserves symplecticity
• simple and based on several known solutions
• emphasis on numerical process

TPSA

Dragt-Finn



Symplectic Conditions in 
Hamiltonian System

JMJM T =oo

artificial     damping or           growth

M is the Jacobian matrix of transfer map and
J is symplectic unit matrix.
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Hamiltonian for a Sector Bend with 
Mutipoles in Cylindrical Coordinate  

TRACY&DESPOT&LEGO&AT:

TEAPOT&PTC&SAD:

(large ring)

(small ring)
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where As is given by the harmonic expansion:

• As(x,y) describes magnetic imperfection inside 
the body as well as many type of magnets such 
as quadrupole (b2) 
• H can not be solved in general but can be split 
into solvable pieces

solvable

paraxial approximation

X

Z

x
θ
ρ

cyclotron
motion



Second-Order Symplectic 
Integrators 
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Separate Hamiltonian into two exactly solvable parts:
10 HHH +=

where and .

Approximation with symplectic integrators:

exact                         propagate   kick                  residual
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• Symmetric and both are second-order integrator but the first one is commonly used
• Derived from the Baker-Cambell-Hausdorf formula
• Becomes the exact solution at the limit of infinite number of segments
• Preserves symplectic condition during the integration



“TEAPOT” as a Second-Order 
Integrators in Hamiltonian System
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Separate H into three exactly solvable parts:
drift

wedge (rotation in y axis)

kick

Another type of second-order integrator:

• Not explicitly depend on the global coordinate and easy to extend to vertical bends
• Not unique and there are other symmetric combinations as well
• Has a geometric interpretation:

L. Shachinger and R. Talman, Part. Accel. 22, 35 (1987)
kicking plane

drift
drift

2
θ

elements
of Euclidean
group



High-Order Symplectic 
Integrators
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Given a second-order integrator: S2(∆s), we can construct
fourth-order integrator:
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R. Ruth, IEEE Trans. Nucl. Sci. Ns-30, 2669, (1983)
H. Yoshisa, Phys. Lett. A. 150, 262, (1990).

• For both the second and fourth order integrators, the result of integration
always becomes exact at the limit that the number of segments approaches
to infinity

• Fourth order integrator is not always more efficient than the 
second-order ones. It is more efficient to integrate quadrupole magnet.
Usually, several segments are required. 



Truncated Power Series Algebra
(M. Berz, Part. Accel. 24, 109, 1989)
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Properties:

(derivatives of sum functions (f+g))

Consider a Taylor series:

(derivatives of scales function λf)

gfgf DDD ⊗=⋅

…

(derivative of function fg)

defined as if the multiplication of
two polynomials but truncated at
the order
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“Polymorphic” Tracking in C++

void Multpole::Kick(double l, double irho, Ray & 
v) const {

double v1, v3, v5;
double bx=0.0, by=0.0, byt=0.0;

v1 = v(1);
v3 = v(3);

if ( order >= 1 ) {
by = bn[order-1];
bx = an[order-1];

for (int j = order-1; j > 0; j--) {
byt = v1 * by - v3 * bx + bn[j-1];
bx  = v3 * by + v1 * bx + an[j-1];
by  = byt;
}

}

v(2) -= l * (by - (v5-v1*irho)*irho);
v(4) += l * bx;
v(6) += l * irho * v1;

}

void Multpole::Kick(double l, double irho, Map
& v) const {

DA v1, v3, v5;
DA bx=0.0, by=0.0, byt=0.0;

v1 = v(1);
v3 = v(3);

if ( order >= 1 ) {
by = bn[order-1];
bx = an[order-1];

for (int j = order-1; j > 0; j--) {
byt = v1 * by - v3 * bx + bn[j-1];
bx  = v3 * by + v1 * bx + an[j-1];
by  = byt;
}

}

v(2) -= l * (by - (v5-v1*irho)*irho);
v(4) += l * bx;
v(6) += l * irho * v1;

}

Tracking phase vector                              Tracking a map



Courant-Snyder Parameters
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One-turn matrix:                               Rotation matrix:

where A-1 is a transformations from physical to normalized 
coordinates:

We have: 1−= ARAM oo

However, the transformation is not unique:
will do the job as well.  
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Linear Lattice Propagation   
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Extending to coupled lattice: Y. Cai, Phys. Rev. E. 68, 036501 (2003)



Nonlinear Normal Form
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A nonlinear Taylor map can be normalized as well:

where J and ψ are action-angle variables and δ is
the relative momentum deviation.

and

)(),(:)),,(exp(::)...),,(exp(:),,( 3 δψδψδψδψ ηAAFFA 1 JJJJ N=

tune, chromaticity, detuning terms

resonances        lattice functions        dispersion

E. Forest, M. Berz, and J. Irwin, P.A. 24, p91 (1989)



Nonlinear Chromaticity in High 
Energy Ring of PEP-II

• Tow methods: normal form 
using LIELIB or numerical 
in LEGO agree well

• 10th order Taylor map used 
for the normal form 
analysis

• Transformation from 
physical to normal 
coordinates becomes a 
function of δ=∆p/p: A-1(δ) 
but the same formula 
applies

ν(δ)

β∗(δ)

x                 y

2
12

2
11 )()()( δδδβ AΑ +=

obtained from analysis of nonlinear normal form 



High-Order Chromatic Optics
Using Normal Form

0      0.63799902339110182       
1    -0.17158413929160805E-03   
2     136.89736397776215       
3    -21222.567788552446       
4    -466110.23264129437       
5     16474262.996298835       
7    -18553799074.778057       
8     7485639719025.4414   

0     1.49929844883925460E-02  
1    -1.63912178521324781E-01  
2     1.42281439147605315E+01  
3   -2.09846852191739163E+03  
4    -1.30051472332955454E+04  
5     1.27799196832761690E+07  
6     1.53322278915590271E+07  
7    -1.24725018999774094E+11  
8    -9.77506834712234766E+12  
9     3.31928901269866650E+15  

10    -7.79515743334024300E+15 

νy(δ)

β∗y(δ)

• A powerful extension to 
Harmon: arbitrary order of 
δ=∆p/p including x-y 
coupling

• Can have other parameter 
dependency, such as the 
strength of sextupoles

• Uniform analysis for both 
linear and nonlinear lattice.  
Easy to implemented

• Accurate high derivatives 
because of TPSA or DA 
technique



Tune Footprint for the Low Energy 
Ring (νx=38.5125, νy=36.5639)  

• Tune footprints 
calculated with normal 
form or with direct 
tracking agree well in 
the main stable region

• Resonance structure is 
not seen in the normal 
form approach 
because it tries to 
smooth out the 
resonances

using LEGO&LIELIB

using LEGO&NAFF

normal
form

tracking

H.S. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975 (1993)



Single Lie Presentation for One-
Turn Map in Circular Accelerator
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A single Lie presentation:

linear normalization rotation

Nonlinear single Lie factor:

Y.T. Yan, J. Irwin, and T. Chen, Part. Accel. 55, 263 (1996).
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• include both resonance driving terms and detuning terms (mx=my=0)
• can be uses for tracking with multiple Poisson brackets (nPB) 
• has been coded by Yiton Yan in C++: Zlib



A 4th Order Resonance near Half 
Integer 4νx=154 in (LER)

• 10th order Taylor map is extracted from 
the design lattice of the Low Energy Ring 
in PEP-II

• 4th order resonance driving-term and a 
detuning term are taken out from the 
single Lie representation for a single turn

• Positions of fixed points and the width of 
resonance are computed analytically and 
iterations of the map is showed on the 
left

• Agreement between a simple perturbation 
theory and the direct tracking is about 
15%

element-by-element tracking (LEGO)

single-resonance map

Smoothed and truncated Hamiltonian (ν=0.5125):

)cos()()( θψαν nmJfJJH −++=

24

tune driving term
detuning term



Dynamics Aperture of LER with 
Synchrotron Oscillations

Dynamics aperture with 
synchrotron oscillation is 
near the separatrix of the 
4th order resonance we 
have seen when the 
synchrotron oscillation is 
turned off. In this simple 
but realistic case, when a 
single and isolated 
resonance dominates, the 
dynamic aperture can be 
estimated using nonlinear 
transfer map and 
perturbation theory 
without tracking. Can we do 
better?

without synchrotron oscillations

with synchrotron oscillations(5σp)



Dynamic Aperture of SPEAR3

• Tracked with LEGO
• Misalignments
• Strength errors
• Multipole errors
• Orbit steering
• Coupling correction
• With synchrotron 

oscillation
• On and off momentum

Y. Nosochkov and J. Corbett, SLAC-PUB-7965, 1998 

20 mm



Measured Dynamic Aperture vs. 
∆p/p at SPEAR3

Courtesy of J. Safranek, Theory club talk at SLAC, April, 2004

20 mm



Long-Term Dynamic Aperture

• A million turns which is 
about one tenth of the 
injection period is tracked

• All magnetic errors are 
included in the lattice

• Tracking with element-by-
element using symplectic 
integrators in LEGO

• Synchrotron period defines 
the boundary between the 
short-term and long-term 
stability of the particle.

Survival plot for SSC

short-term

long-term



Coherently Excited Betatron 
Motion and Turn-by-Turn data

• Beam excited at eigen 
frequency in x or y

• Equilibrium reached due to 
radiation damping or 
decoherence

• Take turn-by-turn reading 
at all beam position 
monitors up to 1024 turns

• The phase advances 
between the beam position 
monitors can be accurately 
measured 

J. Borer, C. Bovet, A. Burns, and G. Morpurgo, Proc. The 3rd EPAC, p1082 (1992)



In addition, Four Eigen Orbits 
Extracted  Using FFT 
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• These orthogonal orbits are the Fourier transforms of the turn-by-turn
readings of beam position monitors at the driving frequency. Since the peak in 
the spectrum can be located accurately, they can be measured precisely as well.

horizontal                                vertical

real

imaginary
mode 1

real

imaginary

mode 2



R-Matrix Elements Derived from 
Four Orthogonal Orbits

where a and b are indices for the locations of the beam 
position monitors, Q12 and Q34 are global invariance of the
orbits. For general orbits, the relationship is much more 
complicated.
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BPM Gains and Couplings
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where gx, gy are gains and θxy, θyx are 
cross-coupling between x and y.

Measured xyg
yxg

yxy

xyx

θ
θ

+=

+=

y

x
Beam



Local Coupling in the LER
(October 20, 2003)

whole
ring

near the 
interaction
point

mode 1                                           mode 2



β Beating correction for the High 
Energy Ring (November 4, 2003) 
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Correction of Gains and coupling

0 50 100 150 200 250 300
0.5

1

1.5

g x

0 50 100 150 200 250 300
0.5

1

1.5

BPM Sequence number

g y

corrected
before

0 50 100 150 200 250 300
−0.5

0

0.5

θ xy

0 50 100 150 200 250 300
−0.5

0

0.5

θ yx

X gain

Y to X

X to Y

Y gain



Summary and Conclusion

• Canonical integrators using together with the truncated power 
series provide us a powerful and yet simple scheme for the tracking 
and analysis of single particle in circular accelerators. It has
intrinsically inherited consistency between the tracking and its
very order-order map. 

• TEAPOT can be considered as an application of symplectic 
integrators, which make it applicable to non-planar accelerators. 

• Nonlinear normal form can be applied to compute the chromatic 
lattices order-by-order with respects to d to an arbitrary order. 
This is extension to HARMON.

• Dynamic aperture simulated by tracking is reliable within 20%  
compared with the experimental measurements provided the 
accurate inputs of machine errors.

• Smoothed and truncated Hamiltonian can be derived from the one-
turn map and is useful way to understand the resonances in circular 
accelerators. 

• Similar to the accurate tune measurement, optical measurement 
based on coherently excited orbits and  frequency analysis has 
shown its advantages in accuracy and simplicity when it applies to 
highly coupled rings


