1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

Alessandro G. Ruggiero M. Blaskiewicz, T. Roser, D. Trbojevic, N. Tsoupas, W. Zhang

Oral Contribution to EPAC 04. July 5-9, 2004

Present BNL - AGS Facility

F D F

Performance

Rep. Rate	0.4 Hz
Top Energy	28 GeV
Intensity	7 x 10 ¹³ ppp
Ave. Power	125 kW

AGS Upgrade with 1.2-GeV SCL

F

D

F

AGS Upgrade with 1.5-GeV FFAG

F

D

F

1.5-GeV FFAG Lattice Design

Energy Range

400 MeV - 1.5 GeV

 $p = p_0 (1 + \delta)$

Reference Momentum, **p** Momentum Range, δ Circumference No. of Periods **Period Length** Drifts: Long (S) Short (g) Length F-sector: Field Gradient D-sector: Length Field Gradient Phase Advance / Period Betatron Tunes, $v_{\rm H} / v_{\rm V}$ Transition Energy, γ_{T}

954.263 MeV/c 0 - 1.36 807.091 m 136 5.9345 m 2.5345 m 0.3 m 0.70 m -0.7841 kG 26.58 kG/m 1.40 m 1.8345 kG - 23.30 kG/m 105.23° / 99.93° 39.755 / 37.755 105.482 i

Non-Scaling FFAG Lattice

Chromaticity with Linear Gradient

Non-Scaling Lattice:

Narrow p-Aperture, Lower Field, Varying Tune

Adjusted Field Profile

BNL - C-A/AP/148

• Linearized Equations of Motion

• Introduce the *field index* $n(x) = G(x) / h B_0$

$$\begin{array}{rcl} x'' & + & h^2 \left(1 \, + \, n \right) x \, / \, (1 \, + \, \delta) & = & h \, \delta \, / \, (1 \, + \, \delta) \\ y'' & - & h^2 \, n \, y \, / \, (1 \, + \, \delta) & = & 0 \end{array}$$

• Consider the general case where the field index is a nonlinear function of both x and s, namely n = n(x, s). At any location s, for each momentum value δ there is one unique solution $x = x(\delta, s)$, and by *inversion* δ is a function of x and s, namely $\delta = \delta(x, s)$. We pose the following problem: Determine the field distribution, namely n = n(x, s), that compensates the momentum dependence of $(1 + \delta)$ at the denominator:

$$n(x, s) = n_0 [1 + \delta(x, s)]$$
 --> $G(x, s) = G_0 [1 + \delta(x, s)]$ <---

where n_0 is related to the gradient $G_0 = n_0 h B_0$ on the reference trajectory. • Then the equations of motion reduce to

$$\begin{array}{rcl} x'' &+& h^2 \, x \, / \, (1 \, + \, \delta) &+& h^2 \, n_0 \, x \ = \ h \, \delta \, / \, (1 \, + \, \delta) & \dashrightarrow & x = x(\delta, \, s) \ \dashrightarrow & \delta = \delta(x, \, s) \\ y'' &-& h^2 \, n_0 \, y & = \ 0 \end{array}$$

Magnet Field Profiles -- β-Tunes p-Bundle

RF Cavity System

Parameters of Acceleration

Circumference	807.091 m
Harmonic Number, h	24
Energy Gain	0.5 MeV / tu
Transition Energy, γ_T	105.5 i
Number of full Buckets	22 out of 24
Total Number of Protons	$1.0 \ge 10^{14}$
Protons / Bunch	$4.6 \ge 10^{12}$
Injection Period	1.0 ms
No. of Revolutions	2,200
Acceleration Period	7.0 ms
Total Cycle Period	8.0 ms

RF Cavity System

Peak RF Voltage	0.8 MVolt
No. of RF Cavities	20
No. of Gaps per Cavity	1
Cavity Length	1.0 m
Internal Diameter	10 cm
Peak Voltage / Cavity	40 kVolt
Power Amplifier / Cavity	250 kW
Energy Range, MeV	400 1,500
β	0.7131 0.9230
Revol. Frequency, MHz	0.2649 0.3428
Revolution Period, µs	3.78 2.92
RF Frequency, MHz	6.357 8.228
Peak Beam Current, Amp	4.24 5.49
Peak Beam Power, MW	2.12 2.75

• One can add more Cavities later to shorten acceleration period

• Or start with fewer Cavities and longer acceleration period

' turn

Multi-Turn Injection (H⁻)

F

D

F

10 cm x 20 cm Vacuum Chamber

Revolution Period	2.92 µs
Beam Gap	300 ns
Kicker Magnet, Length	1.5 m
Field	1 kG
Rise-Time	< 300 ns
Septum Magnet, Length	1.5 m
Field	10 kG
Repetition Rate	2.5 Hz

F

D

F

The Kicker field remains constant for the duration of the beam pulse (about $2.6 \ \mu$ s), and it is finally reset to zero-value in about 100 ms, to be fired again the next cycle.

Wednesday, July 7, 2004

Magnet Design

Space Charge at Injection

FFAG AGS

Kinetic Energy	400 MeV	1.5 GeV
Total no. of Protons	1 x 10 ¹⁴ (equiv. to 1	.12 MW)
Normalized Emittance	100 π mm-rad (5 x r	ms, full)
Actual Emittance	98 π mm-rad	42 π mm-rad
Bunching Factor	3	4
Tune-Shift	0.5	0.16
β_{V} - max	12 m	22 m
$\mathbf{a}_{\mathrm{V}} = (\varepsilon \ \beta_{\mathrm{V}})^{1/2}$	34 mm	30 mm

FFAG final Energy can be increased (e.g. to 2.0 GeV) to ease Injection into the AGS

Tune Diagram

Central Tune

Space-Charge Tune-Shift

F

D

F

Because of the very large periodicity (136) there are no systematic resonances in the chosen tune region up to and including 16th order. The lowest order resonance to cross the tune range is of 17th order.

We have opted for a tune difference of 2 units to avoid the coupling resonance.

Conclusions

The **1.5-GeV FFAG** is an attractive alternative to the **1.2-GeV SCL** as the new injector for the **AGS Upgrade** program. The merits are:

- More familiar and conventional technology
- Less expensive
- Possibility of acceleration of Heavy Ions

More work has clearly to be done before it is considered as a substitute to the SCL.

By extrapolation, it is also a continuous high power **Proton Driver** for a variety of applications:

Final Energy	1.5 GeV
Repetition Rate	125 Hz
Protons / Pulse	$1.0 \ge 10^{14}$
Average Beam Power	3.0 MWat