

Performance Requirements for Monitoring Pulsed, Mixed Radiation Fields Around High-Energy Accelerators

D. Forkel-Wirth, S. Mayer, H.G. Menzel, A. Muller, T. Otto, M. Pangallo, D. Perrin, M. Rettig, S. Roesler, L. Scibile*, H. Vincke, *CERN SC-RP, CERN TS-CSE**

> C. Theis TU Graz, Graz, Austria

M. Latu Saphymo-Genitron-Novelec, Grenoble, France

EPAC 2004 - Doris Forkel-Wirth

Contents

- Metrology in High-Energy Mixed Radiation Fields
- Metrology
 - Comparison between experiment and Monte Carlo simulation for
 - High-pressure ionisation chambers (H, Ar filled)
 - Air filled plastic ionisation chambers
 - Recombination effects
- Technique
 - Read-out electronics: charge digitizer
- Conclusion

Radiation Protection Task

Radiological survey of work places:

 Measurement of ambient dose equivalent H*(10) [Sv] in pulsed, high energy, mixed radiation fields

Challenge:

- Correct
- Reliable
- State-of-the-art
- Compliant with international standards and legal requirements

Radiation Monitoring System for the Environment and Safety for LHC (RAMSES)

Monitoring of Ionising Radiation

Monitoring of dose rates caused by by

- Prompt radiation (beam on)
- Induced radioactivity (beam off) off)

Mixed High-Energy Radiation Fields

=> Experiment \Leftrightarrow Monte Carlo simulation

5

Comparison of Experiment and Simulations

PMI wall: C-H2

volume: 3 l

gas: air, 1 atm

voltage: 400 V

Interne on Danter To a la Data internet To a la Data internet To a la data Data internet IG5 High-pressure ionisation chamber

volume: 5,2 l active

gas: Ar or H (20 bar)

high-voltage: 1200 V

EPAC 2004 - Doris Forkel-Wirth

Set-up in the CERF Target Area (PMIs)

SPS secondary hadron beam is hitting a copper target \rightarrow irradiation of the PMI chambers with different radiation fields at various positions.

Pos 6

Hadron beam Cu target **EPAC 2004 - Doris Forkel-Wirth** 30 August 2004

Pos 4

Pos 5

Pos₁

Pos₂

Pos 3

Beam parameters:

• Momentum: 120 GeV/c

• Intensity: 9*107 hadrons/ SPS cycle (16.8 s with 4.8 s continuous beam)

•Composition: 60.7% π⁺ 34.8% p 4.5% K⁺

7

Simulation of Particle Fluences

Simulation of Particle Fluences

Simulation of Particle Fluences

Simulated Dose Distribution

Dose (average within ±10 cm) given in Gy per primary particle hitting the target.

The circles indicate the positions of the chambers.

1 pC = 10 nGy deposited in active volume

Contribution of the Different Particle Types to the Energy Deposition

Comparison simulation and experiment

	Simulation Counts/ prim. part. *10 ⁻⁶	Simulation error *10 ⁻⁶	Measurement Counts/ prim. part. *10 ⁻⁶	Measurement error *10 ⁻⁶	Simulation/ Measurement	Error
Pos 1	5,63	± 0,12	5,64	± 0,56	0.998	± 0.102
Pos 2	16,06	± 0,44	15,58	± 1,56	1.031	± 0.107
Pos 3	67,46	± 0,73	67,25	± 6,93	1.003	± 0.104
Pos 4	85,33	± 0,64	79,00	± 8,67	1.080	± 0.119
Pos 5	96,20	± 1,26	89,39	± 9,47	1.076	± 0.115
Pos 6	108,31	$\pm 0,82$	115,74	± 17,99	0.936	± 0.146

The IG5 at CERF

80 cm of concrete between detector and target

30 August 2004

EPAC 2004 - Doris Forkel-Wirth

Particle fluence at CT6/T10

Comparison simulation & experiment for IG5

Dose Measurements in Pulsed Fields

Recombination effects

Recombination effects

90 % ion collection efficiency level

Ar	~ 15 µGy/pulse
Н	~ 250 µGy/pulse
Air	~ 50 µGy/pulse

Experiment agrees well with recombination model of W. Boag (ICRU 34) for air and H (the model is not applicable for Ar)

30 August 2004

EPAC 2004 - Doris Forkel-Wirth

Read-Out Electronics

For pulsed fields the read-out electronics has to be based on charge digitizers

Range to be covered:

 $10^{\text{-}14} \text{ A}$ (background level) $\,$ - $10^{\text{-}5} \text{ A}$

Switching not permitted!

Present CERN electronics covers 5 – 6 decades

Newly developed: 9 – 10 decades First tests: electronics measures reliably up to 300 nC/pulse ~ 50 mGy/hour (LHC injection)

EPAC 2004 - Doris Forkel-Wirth

30 August 2004

Conclusion

- Response of ionisation chambers to pulsed, mixed high energy radiation fields is very well understood
- Detector response to LHC radiation fields can be extrapolated by Monte Carlo simulations
- Studies will be used to define RP standards in the field of radiation monitoring around particle accelerators
- Adequate read-out electronics is developed to cover a wide measuring range
- "Pulse per pulse" data locking possible
- Air filled plastic ionisation chambers can be used for on-line monitoring of high doses inside the tunnel or the experiments
- Further studies: optimisation of the detector design by Monte Carlo simulations (variation of fill gases, walls...)

All radiation protection competencies, experience and tools exist to survey properly the LHC