

MULTITURN EXTRACTION BASED ON TRAPPING IN STABLE **ISLANDS AT CERN PS:** RECENT MEASUREMENT ADVANCES M. Giovannozzi and R. Cappi, S. Gilardoni, M. Martini, E. Métral, A. Sakumi, R. Steerenberg, CERN A.-S. Müller, ISS, Forschungszentrum Karlsruhe Summary:

- Present multiturn extraction
- New multiturn extraction
- Measurements: phase space reconstruction
- Measurements: trapping lowintensity beam
- Measurements: trapping highintensity beam

Introduction: why multiturn extraction?

- The beam has to be "manipulated" to increase the effective length beyond the machine circumference.
- AT CERN this mode is used to transfer the proton beam between PS and SPS. In the SPS the beam is used for
 - Fixed Target physics (broad sense)
 - Neutrino experiments (until 1998)
 - CERN Neutrino to Gran Sasso (CNGS) (from 2006)

These beams are high-intensity (about 3×10¹³ p in the PS). An intensity upgrade for CNGS is under consideration (about 4.8×10¹³ p in the PS, corresponding to 8 bunches of 6×10¹² p each).

Present multiturn extraction – I

 $C_{SPS} = 11 C_{PS}$

First PS batch Second PS batch Gap for kicker

Beam current transformer in the PS/SPS transfer line

1 2 3 4 5 (total spill duration 0.010 ms)

Present multiturn extraction - II

Massimo Giovannozzi

Present multiturn extraction - |||

The main drawbacks of the present scheme are:

- Losses (about 15% of total intensity) are unavoidable due to the presence of the electrostatic septum used to slice the beam.
- The electrostatic septum is irradiated. This poses problems for hands-on maintenance.
- The phase space matching is not optimal (the various slices have "fancy shapes"), thus inclucing betatronic mismatch in the receiving machine, i.e. emittance blow-up.
- The slices have different emittances and optical parameters.

Novel multiturn extraction – I

The main ingredients of the novel extraction:

• The beam splitting is not performed using a mechanical device, thus avoiding losses. Indeed, the beam is separated in the transverse phase space using

- Nonlinear magnetic elements (sextupoles ad octupoles) to create stable islands.
- Slow (adiabatic) tune-variation to cross an appropriate resonance.
- This approach has the following beneficial effects:
 - Losses are reduced (virtually to zero).
 - The phase space matching is improved with respect to the present situation.
 - The beamlets have the same emittance and optical parameters.

Novel multiturn extraction - II

Left: initial phase space topology. No islands. Right: intermediate phase space topology. I slands are created near the centre.

Bottom: final phase space topology. I slands are separated to allow extraction.

Massimo Giovannozzi

Novel multiturn extraction - 111

1954-2004

CERN

Measurement Campaign

Efforts were devoted to the experimental proof of the proposed extraction:

• 2002: proof of principle using a single-bunch, lowintensity beam.

• 2003: proof of splitting in realistic conditions, i.e. using a single-bunch, high-intensity beam.

Type of measurements:

• Phase space reconstruction to ensure the presence of islands: based on turn-by-turn beam position acquisition.

 Beam profile measurement to visualise splitting: based on wire scanners.

Phase space reconstruction

1954-2004

CERN

1954-2004 Trapping low-intensity beam CERN

The horizontal emittance of the low-intensity beam $(5 \times 10^{11} \text{ p})$ is artificially increased to simulate the high-intensity beam

Trapping high-intensity beam - I

Tests with high-intensity (about 6×10^{12}) beam started in second half of 2003. Losses were observed by the end of the capture process (15–20 %).

Massimo Giovannozzi

How to increase capture efficiency – I

Two approaches are possible to capture more beam in the islands.

- Increase islands' size. This requires increasing nonlinearities (sextupoles and octupoles). It is a delicate procedure (chromaticity has to be corrected – difficult in CERN PS machine).
- Change beam distribution, e.g. induce coreemittance blow-up. It is much easier than playing with islands' size. No need to increase the strength of nonlinearities (always delicate!). The kicker of the q-metre was used.

How to increase capture efficiency - II

16

Adiabaticity tests with lowintensity beam – I

A number of tests were performed by crossing twice the resonance and measuring the profile before and after.

- A symmetric tune curve is used
- Only ∆t is varied

• Very mild dependence on Δt . As long as Δt > few ms no more changes in the final profile

Measurement results indicate that the process is not reversible!

Adiabaticity tests with lowintensity beam – II

The horizontal beam profile after crossing

 Looks like a superposition of two distributions

The wider
distribution
features non gaussian tails

Conclusions and Outlook

- Experimental verification of the proposed approach started in 2002 and continued in 2003. Final results:
 - Capture established for a bunch of up to 6.25X10¹² protons.
 - Clean capture, i.e. without losses, obtained for the lowintensity beam.
 - Losses still present at the end of capture, i.e. when islands are separated for the high-intensity beam. These losses might be induced by H/V coupling due to location of octupoles at large β_V .
- In the shutdown 2003/2004 octupoles were installed in a small β_V section.
- The year 2004 is crucial for drawing conclusions on the feasibility of this scheme for the CNGS Project (nominal and upgraded intensity).

The novel multiturn extraction works also with other resonances

Novel multiturn extraction – IV

Massimo Giovannozzi

