High Field-Gradient Cavity for J-PARC 3 GeV RCS

C. Ohmori and JKJ Ring RF Group KEK and JAERI

J-PARC (Japan Proton Accelerator Research Complex)

- JAERI and KEK Joint Project
- 400 MeV Linac (181MeV in Phase I)
- 3 GeV RCS 1 MW

for neutron and $\boldsymbol{\mu}$ users

• 50 GeV MR 0.75 MW

for v, nuclear and

particle physics

RCS

July 7, 2004

Cavity Parameters (Phase I)

	3 GeV RCS	50 GeV MR
Frequency	Dual Harmonic	Single
1 st	0.94-1.67 MHz	1.67-1.72 MHz
2 nd	1.88-3.34 MHz	(or 3.34-3.44 MHz)
Harmonics	2	9 (or 18)
RF Voltage(Max.)	450 kV	280 kV
Number of Cavity	11+(1)	6+(1)
Cavity Length	About 1.8-2.0 m	1.776 m
Optimum Q	2-	10 (20)
Core	MA, cut core, gap 0.5mm	MA, cut core, gap 10 mm
Power Dissipation		
Average	6.6 kW/core	13.2 kW/core

Why High Field Acceleration

3 GeV RCS
Fast cycling:25 Hz

Needs high voltage:450 kV

of bunches: 2 (by neutron-users)
Rise time of Extraction Kicker

Low Frequency:0.94-1.7MHz

Circumference is limited.
Needs spaces for extraction, injection and collimation.

High Field Gradient using MA core

Characteristics of MA core

- Core is made of thin Magnetic Alloy ribon tape.
- Very large permeability- μQf -product is large.
- *µQf*-product remains constant at very large magnetic flux density. Saturation flux density is 15 kG.
 - High Field Gradient becomes available!
- Intrinsic Q-value is 0.6 (FINEMET).
 - **Frequency sweep** without tuning system is possible
 - Dual (Multi-) Harmonics system
- Q-value is variable by Cut Core Configuration.

Cut Core Configuration

Optimum Q-value (Beam Loading)

Optimum Q-value is 2.

Bandwidth for dual harmonic acceleration

Less beam loading effects with H=2,4,6 compensation

Although multi-H compensation (H=1,...,6) is applied, beam loss is expected, in case of Q=0.6(left). No beam loss in case of Q=2(right) TUPLT072 M. Yamamoto

July 7, 2004

Optimum Q-value Bandwidth of RCS RF System

• 2 X 600 kW tetrode tubes have 1 nF grid capacitance.

– Bandwidth of input circuit is 5 MHz

Optimum Q-value (Dual Harmonic Operation)

- Q=2 can cover the 2nd harmonic frequency around the injection.
- Dual Harmonic RF will help to reduce S.C. effects. An Example of dual harmonic r

An Example of dual harmonic rf using a MA cavity in HIMAC(May '04).

Adding the 2nd Harmonics, acceleration efficiency was improved by 30 %. Another 10 % was improved by the 3rd Harmonics.

C. Ohmori, A. Takagi(KEK), M. Kanazawa, K. Noda, A. Sugiura(NIRS)

July 7, 2004

Cooling Scheme

Both direct and indirect water cooling schemes were tested. Direct cooling is used for J-PARC for high cooling efficiency. High Power test has been performed

July 7, 2004

Power Loss in Cut Core

In case of a large cut core, only a limited choice of cutting method (water jet).

Localized temperature rise has been observed.

The temperature was measured using a "Infra-red Camera"

July 7, 2004

Temperature Rise at Cut Surface

By improving the water flow going through the cut core gap, cooling efficiency was improved.

Thermo-paint was used to measure the temperature during the test .

Core surface after 8-hours high power test with 0.4 W/cc (1.2 X J-PARC spec). No significant damage was observed on the core. spacer are still hot.

July 7, 2004

Power Loss in Cut Core

Temperature distribution on other cut core.

In case of cut core with a good cut surface, no localized temperature rise has not been observed. July 7, 2004 EPAC2004, Lucerne

Temperature Rise at Cut Surface

Core surface after 8-hours high power test with 0.4 W/cc (1.2 X J-PARC spec)

Core surface after 0.5-hours high power test with 0.8 W/cc (2 X J-PARC spec)

July 7, 2004

Cut Core Surfaces

Water Jet Cut

Grindstone + Etching

Measurements using Laser depth-meter

Cut Core Surfaces

Water Jet Cut

Finmet layer with 18 µm thickness is shown in both pictures. The surface by water jet cut is not flat.

18µm

Localized temperature rise is related to the condition of cut core surface.-> A smooth cutting scheme is under development. July 7, 2004 EPAC2004. Lucerne

Status of 3 GeV RCS RF

- Core : Production (40 cores for 2 cavity)
- Cavity: Designing
- APS : Production & Testing
- AMP : Production & Testing
- D-AMP : Designing*
- Low Level : Designing * Based on CERN-KEK collaboration.

EPAC2004, Lucerne

July 7, 2004

Summary

- A wideband RF system using MA cavities is used for J-PARC RCS.
- The optimum Q-value for acceleration and for whole RF system is 2 to cover the 2nd harmonics.
- Cut core configuration is used to increase the Q-value. However, localized loss was observed if the surface is rough. A smooth cutting scheme is under development.
- By improving the water flow in the water tank, temperature rise is acceptable for acceleration and no damage was observed.
- MA cores, Anode PS, Amplifiers are in production. Cavities and others will start manufacturing.