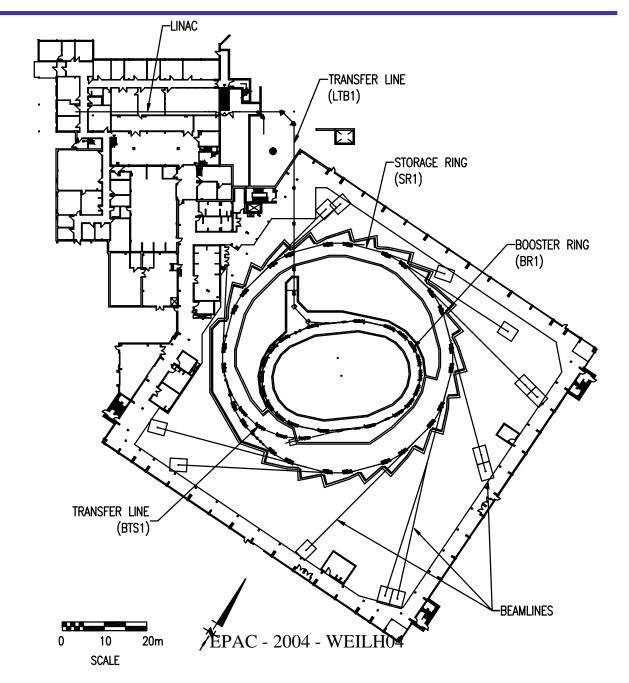
Industrial Involvement in the Construction of Synchrotron Light Sources

Canadian Centre canadien Light de rayonnement Source synchrotron

M.S. de Jong, Canadian Light Source Inc. European Particle Accelerator Conference – 2004-07-07

Introduction


- Large demand for synchrotron light sources
 - Completed in past few years:
 - BESSY II, SLS, CLS, SPEAR III
 - Under construction:
 - DIAMOND, SOLEIL, SESAME, Australia, Spain, China
- Many newer sources are "green field"
 - No major national laboratory for support
 - Little pre-existing infrastructure
 - Small design teams
 - Little experience amongst team members
 - Greater reliance on industrial involvement and support

- CLS Project approved on 1999 March 31
 - 140.9 M \$C to construct:
 - 2.9 GeV booster and third-generation storage ring
 - at least six beamlines
 - Only 22 staff at the start of the project, including:
 - 2 accelerator physicists
 - 1 mechanical engineer
 - 1 electrical engineer
 - 4-person group for IT, controls, diagnostics
 - 2 scientists
- Challenge:
 - Complete facility in ~ five years
 - Increase technical staff to ~60
 - Build organization for operations and future R & D
- Review industrial involvement through major CLS contracts
 - Examine issues and challenges
 - Determine "lessons learned"

CLS Facility

2004 July 07

Status – 1999 June 15

- Canadian Light Source Inc.
 - Not-for-profit corporation controlled by U. of Saskatchewan
 - Permits independent policies and management
 - Responsible for:
 - Overall management and operation
 - Liaison with users, 14 capital funding and 4 operating funding partners
 - Technical design of accelerators, storage ring and beam lines
 - License from Canadian Nuclear Safety Commission
- UMA Management Services
 - Day-to-day project and construction management
 - Design and Engineering of conventional facilities (building and services)
 - Additional technical design and engineering support as needed
- Formed an effective joint project team

Major Contracts - Strategy

- For accelerator systems:
 - Reduce detailed design as much as possible
 - Proceed with design only far enough to ensure feasibility
 - Functional and performance specifications only
 - Retain responsibility for:
 - Supervisory control
 - Machine protection
 - Personnel protection systems
 - Suppliers to perform as much testing as possible
- For beamlines and insertion devices:
 - Develop some beamline design capability
 - Develop room-temperature ID design and construction capability

Major Contracts - Booster

- First major technical contract awarded to Danfysik
 - CLS supplied nominal lattice design
 - Used to validate cost estimates for storage ring
 - Forced development of facility standards and guidelines
 - Allowed CLS staff to focus on storage ring system design
 - "Turn-key" System included:
 - All magnets supplied, pre-aligned on girders
 - All power supplies
 - RF system
 - Vacuum chambers
 - Diagnostics
 - Included installation supervision and commissioning assistance
 - Supply excluded control system, vacuum pumps
- Awarded in 2000 January
- Installation complete in 2002 July
- Commissioning tests complete in 2002 September

Booster Extraction Area

Major Contracts - IT

- EDS Canada supplied:
 - redundant network and server backbone for all data and communications including:
 - Office, control and beamline networks (VLANs)
 - Voice-over-IP telephones
 - IT architecture:
 - Guidelines and recommendations for future IT expansion
 - Analysis of CLS IT requirements
- External Review Committee to monitor contract
 - Valuable comments from expert reviewers
- Difficult contract scope
 - Few CLS management processes had clear IT needs
 - User requirements very difficult to determine so early in project

Major Contracts – Magnets and Power Supplies

- Magnets
 - Developed a magnet measurement laboratory
 - Primarily to support ID development
 - But supplies must measure all accelerator magnets
 - Can be rechecked at CLS, if necessary
 - Dipole magnets (TESLA)
 - Measurements done in Barcelona
 - Quadrupole and Sextupole magnets (Sigma-Phi)
 - All magnets within specifications
- Power Supplies
 - Programmable DC for storage ring magnets (IE Power)
 - Pulsed supplies and magnets (Danfysik)

Storage Ring Sector

- Early decision to change to Superconducting RF
 - Determined frequency (change to 500 MHz)
 - Availability of cavity suppliers
- Cavity (ACCEL)
 - Single cavity (+spare) based on 500 MHz Cornell design
 - Includes cold valve box and instrumentation
- 300 kW RF Amplifier (Thales)
 - Turn-key system: power supply, klystron, circulator and loads
- Cryoplant (Linde)
 - >250 W cooling at 4.4 K
- CLS is first light source to use SRF storage ring acceleration!
 - Operations support part of responsibility of two technicians
 - CLS only provided waveguide and low-level RF control

Superconducting RF Cavity

Major Contracts - Vacuum

- Vacuum pumps and controllers (Varian)
 - Single supply contract for the entire facility
 - Negotiate standard prices for all procurement
 - CLS supplies pumps and controllers to all contractors
- Storage ring vacuum chambers (FMB)
 - Based on BESSY II and SLS design
 - Installation by local construction contractors under CLS supervision

- Insertion devices
 - 4 designed and assembled in-house
 - Two PPM, one hybrid in-vacuum SGU, one EPU
 - Support structures by ADC (PPM+EPU) and RMP (SGU)
 - Superconducting multi-pole wiggler (BINP)
- Front-ends based on APS design (Johnsen Ultravac)
- Seven beamlines
 - 2 IR beamlines
 - spectrometers (Bruker) and optical chicane (ADC)
 - Five x-ray beamlines
 - Two turn-key (IDT+Koizu, ACCEL)
 - Two functional specification of components (Jobin-Yvon, Oxford Danfysik, and McPherson)
 - One build-to-print (Johnsen Ultravac) based on ALS design

Issues and Challenges - 1

- Project management view: scope, cost and schedule
- Scope:
 - Need "standard" scope for technical specifications
 - Availability of good sample technical specification important
 - no "bonus points" for originality in specifications
 - Need design standards and guidelines very early in project
 - Difficult with new or inexperienced staff
 - Desirable to have at least 3 bids
 - Can determine scope of major tenders
- Cost:
 - Importance of competitive bids
 - Typically factor of two or more in price if 3 or more bids for designbuild tenders
 - Restrictive tendering practices will increase cost
 - Frequently used fixed price + incremental rates for most labour contracts
 - Competent installation labour will challenge design team to keep ahead

Issues and Challenges - 2

- Schedule:
 - Most design-build contracts arrived late
 - 10 major CLS accelerator contracts
 - 8 deliveries were late by between 5 and 8 months
 - Overall project schedule needs to allow for this possibility
 - CLS targeted all contracted deliveries by end of 2002
 - Approximately $\frac{1}{4}$ to $\frac{1}{3}$ of delay was due to CLS
 - Delays CANNOT be used to justify other schedule slippage
 - Control of scope and design changes essential
 - Need engineering change control
 - New staff often unfamiliar with process
 - Used bonus-penalty contract for two smaller contracts effective
- Communications (internal and external):
 - Need good tracking of issues raised and their resolution
 - Plan on 3 5 face-to-face meetings over contract duration
 - Use weekly teleconference with email of issue-tracking form
 - Difficult to reduce internal delays when contractor questions arise

2003 December

SUCCESS: 10 mA Stored beam in "C L S" fill pattern

- Storage ring commissioning finished in 2004 May
 - Approximately six months behind original schedule
 - Cost over-run is approximately 0.05%
- Start Routine Operation in 2004 August
- I wish to acknowledge the huge contribution to our success by:
 - All CLS suppliers and vendors for their commitment to high quality work
 - University of Saskatchewan management and staff
 - UMA Engineering
 - All CLS staff