

Technological challenges for high brightness photo-injectors

G. Suberlucg CERN

- High brightness
- Photo-injectors
- Photocathodes
- Lasers
- Guns
- Technological challenges: Top 10

High Brightness

A high brightness means that the electron bunch has a high density in 6 phase space dimensions

High charge
$$Q$$
 1 nC \rightarrow 100nC / pulse Short pulse τ_{FWHM} 20 ps \rightarrow 0.3 ps

High intensity $100 A \rightarrow 10 kA$

$$B_n(A \cdot m^{-2} \cdot rad^{-2}) = \frac{2 \cdot I}{\sigma_{n(x)} \cdot \sigma_{n(y)}}$$
 10¹¹ \rightarrow 10¹⁵ A.m⁻².rad⁻²

Low emittances 10⁻⁴ m.rad → 10⁻⁶ m.rad

High Brightness

(2)

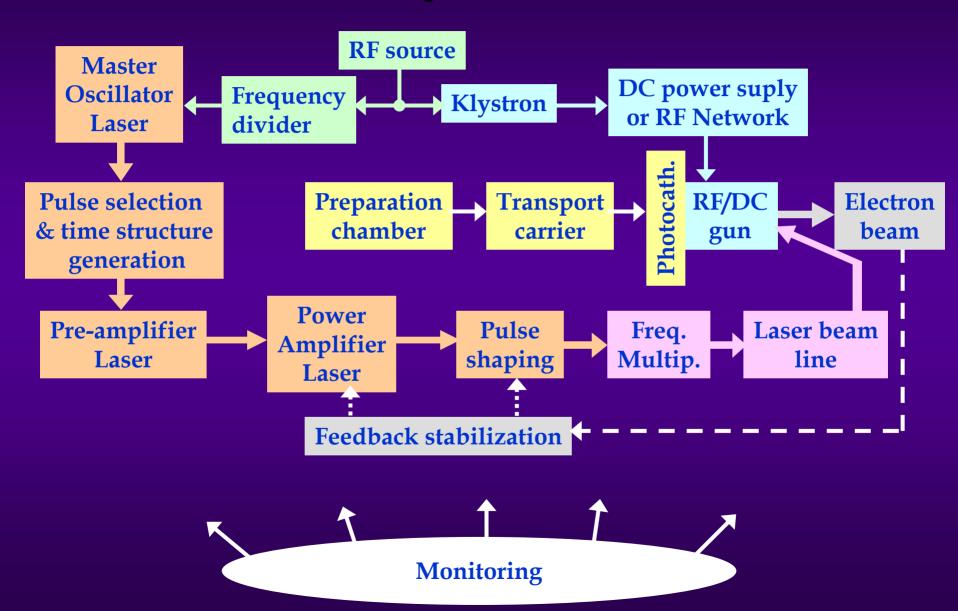
Some examples of source requirements

	I (A)	t _{FHHM} (ps)	e _n (mm.mrad)	B _n (A.m ⁻² .rad ⁻²)
Linear Collider	500	8	10	1.1013
SASE-FEL	180	6	2	9.10 ¹³
Energy recovery linac	50	3	1	1014
Laser Wakefield Acc.	1000	0.2	3	2.1014
Future Light Source ~ 2015 "GreenField" FEL (30 KeV)	500	< 1	0.1	1017

Photo-injector

(1)

The photo-injector is a source, it must fulfill the specifications and it must be available and reliable

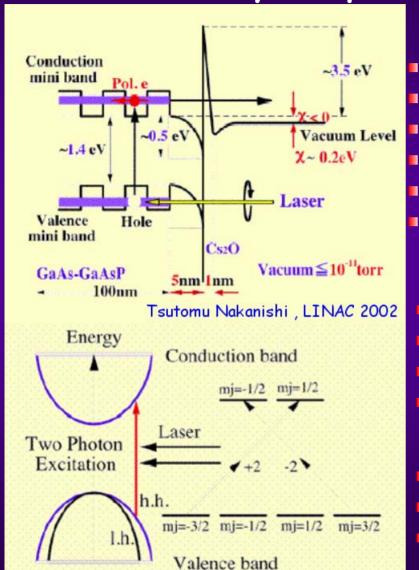

Typical expected behavior:

- Operation time: 2000 5000 h / year
- Availability > 95 %
- MTBF > 1000 h ; MTTR < 4 h</p>
- 1 long annual shutdown (2 3 months)
- 2 or 3 short shutdowns / year (1 week)
- Total lifetime: ~ 10 years

Photo-injector

Photocathodes

Three main sorts:


- Metallic photocathodes
- Activated Gallium-Arsenide photocathodes
- Alkali photocathodes
 - Cesium-iodide
 - Alkali-antimonide
 - Alkali-telluride

Weak part of photo-injectors

Activated Ga-As photocathodes

Mandatory for polarized electron photo-injectors

Requirements

- Strong cleaning by heating and/or with H-
- NEA activation with Cs+O₂ or Cs+NF₃
- Very good vacuum < 10⁻¹¹ mbar
- Low electric field < 5 MV/m</p>
- NO breakdown
- Very low dark current

Best performances

- Polarization ~ 90 %; QE ~ 0.5 % @ 780 nm
- Low thermal emittance ~ 25 meV)
- Shorter pulse length ~ 80 ps
- I_{max} ~ 8 A

Main limitations

- Surface Charge Limit (SCL)
- Lifetime
- Response time

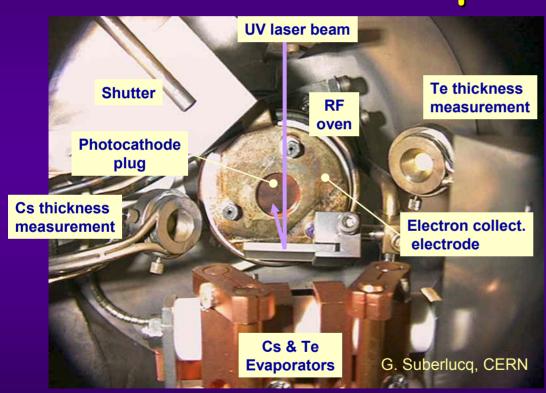
Could be overcome with the two photon process

Metallic Photocathodes

- Require UV light and high laser power
- Special surface treatment for reasonable QE
- Well adapted for high electric field ≥ 100 MV/m
- Well adapted for "low" charge production, typically 1 to few nC per pulse and low mean current: few μA

With QE ~ 10⁻³, Mg seems to be the best metallic photocathode

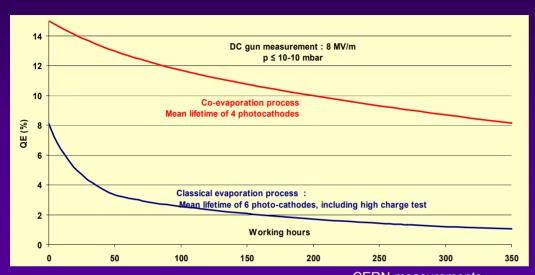
Alkali photocathodes

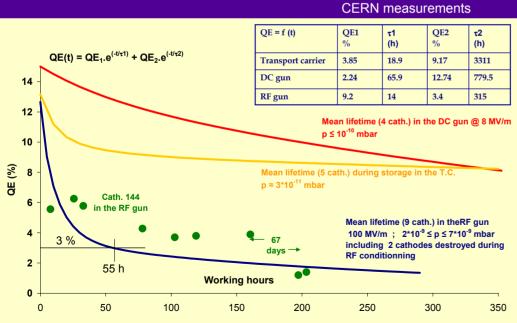

Photocathodes		λ (nm)	QE (%)	Lifetime	
Alkali	CsI	< 200	20	years	Air transportable, Wavelength too short
iodide		0.2	years	Air transportable, Delicate conditioning process	
Alkali antimonide	K ₂ CsSb Na ₂ K(Cs)Sb	< 600	10	Days- hours	Lifetime too short, UHV required
Alkali telluride	Cs ₂ Te, RbCsTe	< 270	15	Months- weeks	Good lifetime and QE, UHV and UV light required

For the time being, Cs-Te photocathodes are the most used for high current and high charge production in operational photo-injectors

Improvement of alkali cathode preparation

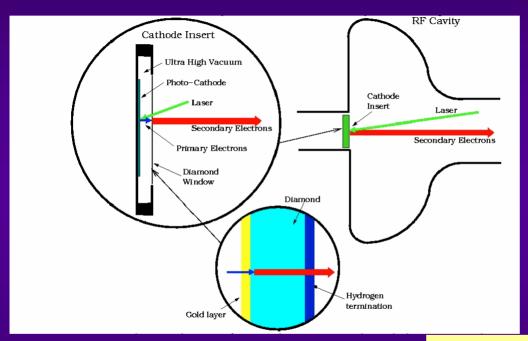
Co-evaporation process




20 cath.	QE(%)	Cs/Te		
Min	8.2	4		
Average	14.9	5.1 (6.6 exp.)		
Max	22.5	7.2		

Difficult thickness measurements and poor reproducibility

Lifetime of Cs-Te photocath.



- Dramatic improvement of QE and lifetime of photocathodes produced by the coevaporation process
- But photocathodes produced by coevaporation seem to be more sensitive to the vacuum quality

Secondary Emission Enhanced photo-emitter

Proposal from I. Ben-Zvi et al. C-A/AP#149, April 2004, BNL

- The diamond window is transparent to photons and electrons
- Electrons are produced by a laser beam shooting an alkaline cathode
- Electrons are multiplied by secondary emission by the diamond window

Expected advantages

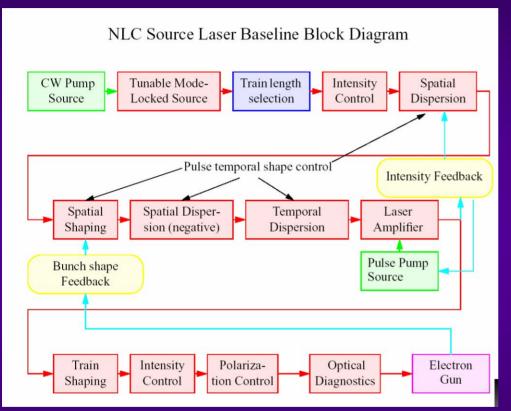
- Cathode insert consist of :
- Alkali antimonide cathode
- A sealed diamond window (~10 μm thick)
- UHV in between

- Very high equivalent QE ~ 1000 %!
- Low laser power
- Low thermal emittance (NEA surface)
- No mutual contamination between the gun and the photocathode
- Possible high mean current
- No load-lock system

Lasers

Master Oscillator Power Amplifier setup to allow ps synchronization

STONG progress in optical pumping and in lasing medium


- Laser diode pumped solid state (LDPSS) lasers
- Nd: Vanadate lasers are replacing Nd: YAG lasers
- Thanks to InGaAs laser diodes emitting in the 900-980 nm, Ytterbium (Yb³+) is the most promising doping material.
- Many new crystals: apatite (S-FAP, CLYPA, SYS, ...), tungstate (KYW, KGW), sesquioxyde (Sc₂O₃, ...) Yb³⁺ doped
- High power oscillator > 60 W
- Fiber laser (not yet actively mode-locked)
- High frequency mode-locked oscillator: 1.5 GHz commercially available
- Transversal and Longitudinal pulse shaping.

SMALL progress in frequency conversion

50-55 % IR to VIS ; 25-30 % VIS to UV

NLC Laser set-up proposal

http://www-project.slac.stanford.edu/lc/local/systems/ Lasers/CombinedLaserSystem/laserr_d.pdf Pulses per train 1 - 200 adjustable

Pulse rate 357MHz or 714MHz

Pulse length 200psec to 700psec adjustable

Pulse temporal shape Square, or adjustable with 100psec bandwidth

Train temporal shape Adjustable: 30 nanosecond time constant

Wavelength range 750 to 870nm (with optics change)

Wavelength tuning range +/- 5nm remote tuning

Bandwidth < 1 nanometer

Pulse energy 5 - 30 micro Joules to photocathode maximum.

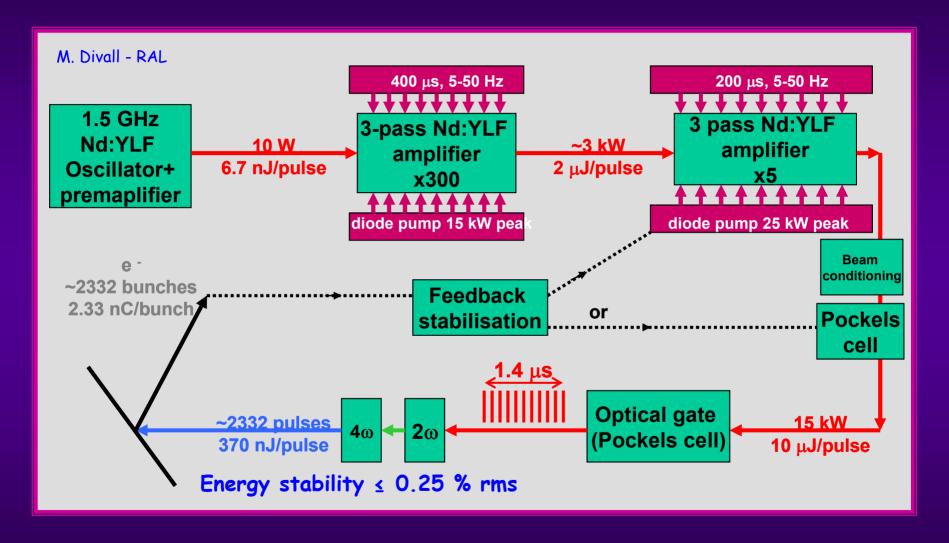
Transverse profile TEM00

Intensity Stability 0.5% RMS

Position stability <1% spot radius RMS

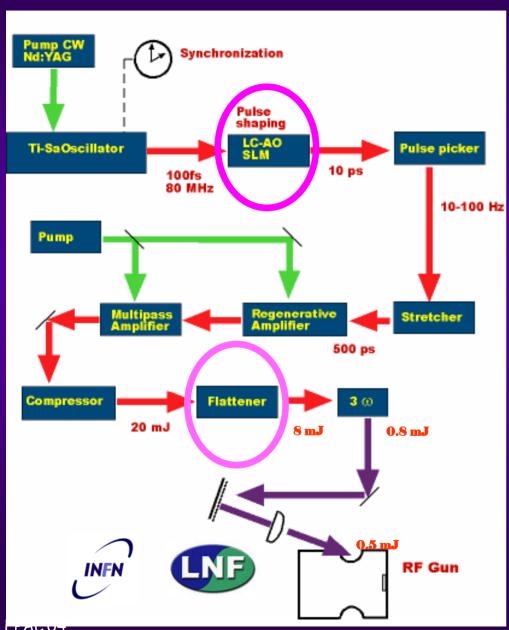
Wavelength stability 0.1 nanometers

Bunch timing stability <10 picoseconds RMS


System MTBF >1000 Hours (Single laser)

System MTTR <4 Hours (Single laser)

System lifetime >50,000 Hours



CERN - CTF3 Laser proposal

SPARC Laser proposal

Operating wavelength 260-280 nm

Repetition rate 10-100 Hz

Number of micropulse 1
per pulse

Pulse energy on cathode 500μJ (

Pulse rise time (10-90%)

Pulse length

Temporal pulse shape

Transverse pulse shape

Energy jitter (in UV)

Laser-RF jitter

Spot diameter on cathode

Spot diameter jitter

Pointing Stability

500μJ (Q.E.=10⁻⁵)

< 1 ps

2-10 ps FWHM

Uniform (10% ptp)

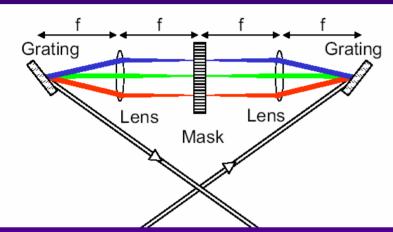
Uniform (10% ptp)

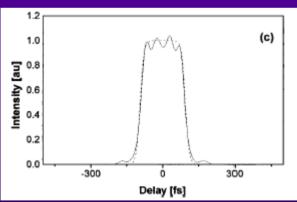
1 % rms

< 1ps rms

Circular 1 mm

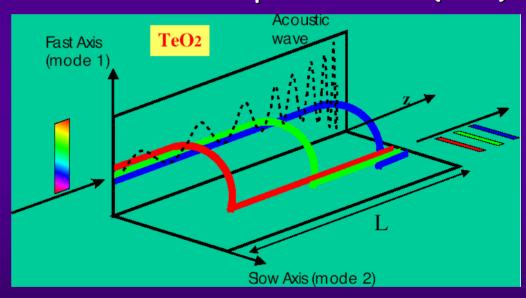
1% rms


1% diameter rms


SPARC Laser group
C. Vicario, A. Ghigo,
F. Tazzioli, I. Boscolo,
S. Cialdi

Temporal pulse shaping

Liquid crystal spatial light phase modulator in Fourier plane



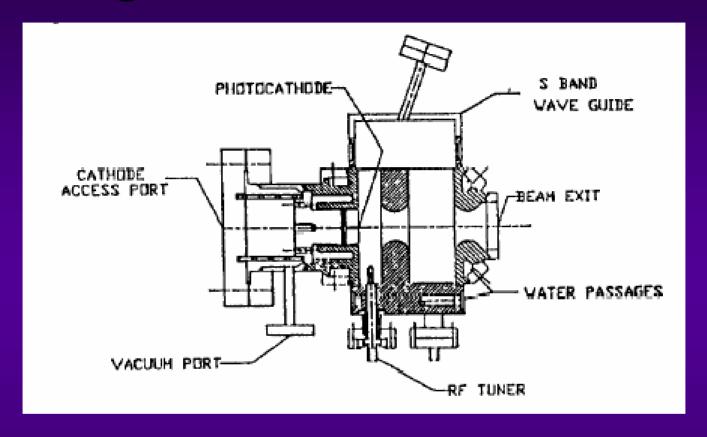
D. Meshulach, D. Yelin, Y. Silberberge J. Opt. Soc. Am., B 15 (1998) 1615

From L Serafini - INFN 2nd ORION Workshop - SLAC - Feb. 19th, 2003

Collinear Acousto-Optic modulator (AOM)

F. Verluise *et* al. Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,

J. Opt. Soc. Am. B/Vol. 17, No 1/January 2000

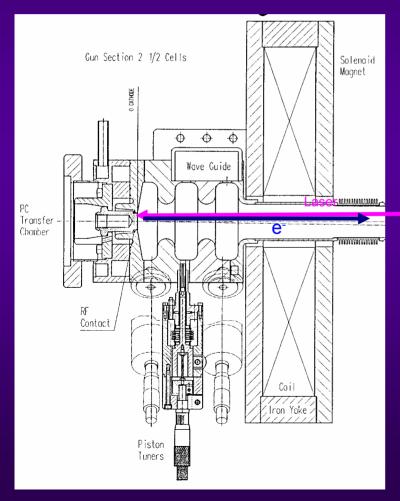


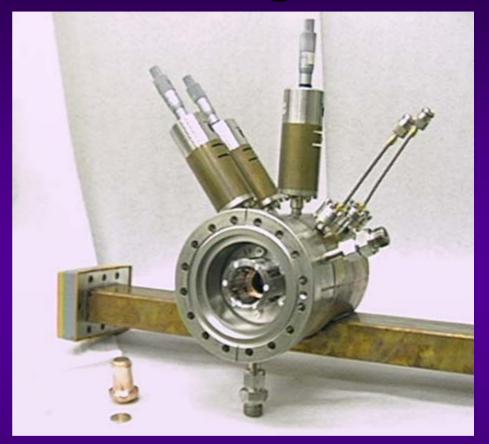
Guns

	high intensity, high electric field	→	RF gun
Unp	High mean current	→	SRF gun
Inpolarized	Very good vacuum, low electric field	→	DC gun
ized	Medium I, medium electric field	→	PWT Under dev.
6	Very high electric field (GV/m)	→	Pulsed DC gun Under dev.
Polarized e-	Low electric field	→	DC gun
	Medium I, medium electric field	→	PWT Under dev.

RF guns: 1.5 cells BNL-type

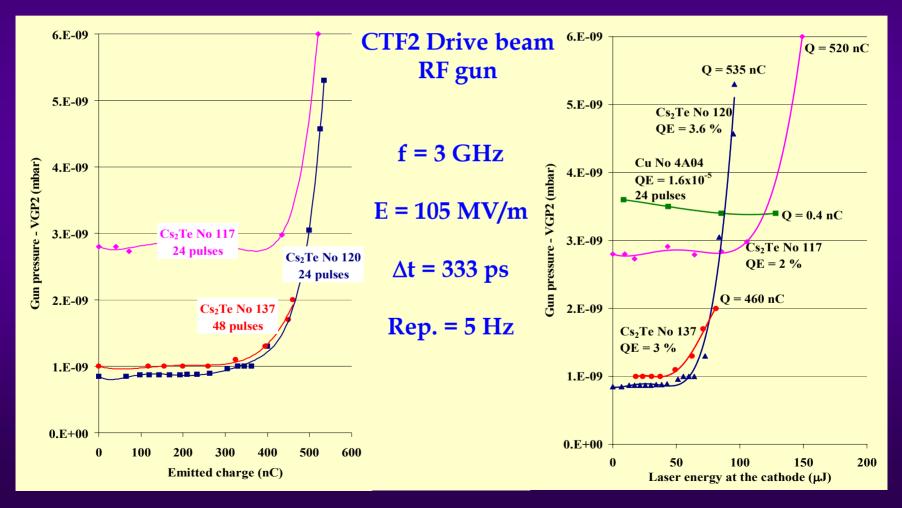
 $1+\frac{1}{2}$ cells , f = 2.856 GHz , Cavity Q = 11800 , $E_{cath.}$ = 100 MV/m , Beam energy = 4.85 MeV 1 pulse , charge = 1 nC , Laser pulse width : σ = 2 psec.


Emittance at the cathode: $e_x = 3.5 \text{ mm.mrad}$, Emittance at exit: $e_x = 7.3 \text{ mm.mrad}$


K. Batchelor et al. *Operational Status of the Brookhaven National Laboratory Accelerator Test Facility,* Proceedings of the 1989 IEEE PAC Conference,

CTF2 drive beam RF gun

RF gun optimized for high charge and high stored energy to minimize transient beam loading. Successfully operated since 1996 until 2002



- 100-110 MV/m operational field at the cathode
- 16 MW input power at 100 MV/m
- Beam energy 7 MeV at 100 MV/m
- Maximum produced charge: 750 nC in 48 pulses
- Pulse width 10 ps FWHM
- Maximum single pulse charge: 100 nC
- Used photocathodes: Cs2Te, Rb2Te, Mg, Cu, Al

RF gun desorption

- Gun desorption is a potentially serious problem for high charge production
- Special attention must be paid to the pumping speed
- Low desorption material must be used

Superconducting RF gun (1)

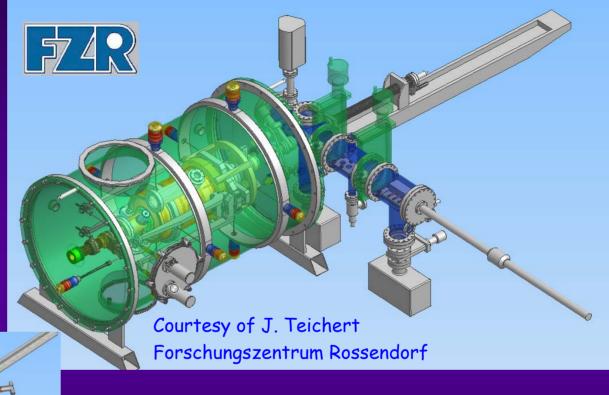
T. Srinivasan-Rao et al. PAC 2003

Q. Zaho et al. PAC 2003

Superconducting RF gun under Development at BNL $\frac{1}{2}$ cell Nionium cavity , 1.3 GHz E_{max} = 45 MV/m Niobium cath. QE ~ 5.10⁻⁵ at 262 nm with laser cleaning.

For high mean current, the requested laser power is too large : $P_L = 95 \text{ W} / \text{mA}$

J. Teichert et al. , SRF 2003, Lübeck


Superconducting RF gun at Rossendorf $\frac{1}{2}$ cell Nionium cavity , 1.3 GHz Tesla geometry Normal-conducting Cs_2 Te photocath. at LN₂ temperature and thermally insulated. Illuminated with 1 W laser at 262 nm

Superconducting RF gun

(2)

1. 3 GHz, 10 kW		
optimized half cell & 3 TESLA		
E _{z,max} = 50 MV/m (T cells)		
= 33 MV/m (1/2 cell)		
77 pC	1 nC	
I _{av} = 1 mA		
E = 9.5 MeV		
0.5 mm mrad	2.5 mm mrad	

- Project under study
- 3½-cell niobium cavity
- Will be operated at 2 K
- Cs₂Te cath. @ LN₂ temp. thermally insulated
- Expected QE ~ 5 %

DC guns

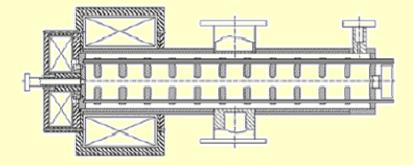
Advantages

- Very good vacuum : 10⁻¹² mbar range
- Very low dark current :~ 2 pA/cm² @ 30 MV/m
- High mean current

Disadvantages

- Limited current density:
 J = perv.U^{1.5} ~ 200 A/cm²
- Limited electric field:
 E ≤ 30 MV/m
- Limited potential :U ≤ 500 kV

For the present time mandatory for GaAs photocathode applications


Other guns

Plane Wave Transformer RF gun

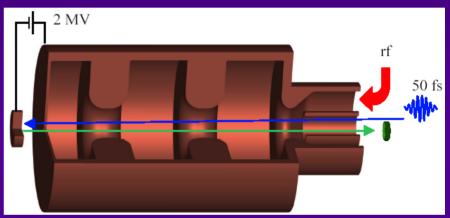
Large vacuum conductance and moderate electric field

THE UCLA PEGASUS PWT S-band gun

60 cm total length Tank diam. : 12 cm 11 cells Disk diam. : 4.2 cm

E_{peak}: 60 MV/m

Energy: 12 - 18 MeV


Emittance_N: 4 mm.mrad (rms)

Charge: 1 nC; Bunch length: 1 - 10 ps

G. Travish et al. PAC 2003

Pulsed DC + RF gun

Alpha-X project DC/RF photo-injector Strathclyde university and Eindhoven University of Technology

 $U_{DC} = 2 MV$; 1 ns

 $E_{peak-DC}$: 1 GV/m; Gap: 2 mm

S-band RF gun ; 100 MV/m

Output Energy: 10 MeV

Emittance_N: $1.\pi$.mm.mrad

Charge: 100 pC

Bunch length: 50 - 200 fs

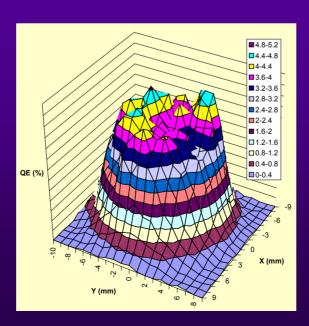
Peak current: 1 kA

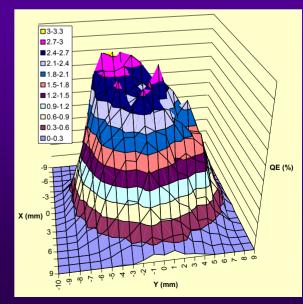
M.J. de Loos et al. EPAC 2002

http://phys.strath.ac.uk/alpha-x/index.html

Cs-Te Layer behavior

Fresh photocathode before use


Photocathode after 170 working hours in the DC gun @ 8 MV/m and 7nC/pulse 8 ns, 10 Hz, P \leq 5x10⁻¹⁰mbar QE_{start} = 16.4 %; QE_{end} = 4.2 %



Photocathode after 148 working hours in the RF gun @ 105 MV/m, 180 nC in 24 pulses , 10 ps FWHM Rep. rate = 5 Hz , $P \sim 2 \times 10^{-9} \text{mbar}$ QE_{start} = 11.4 %; QE_{end} = 2.2 %

Cu photocathode destroyed at 85 MV/m during conditioning process

Technological challenges: top 10

(very subjective selection ...)

Photocathodes:

- Secondary Emission Enhanced photo-emitter;
- Polarized electron production with bulk GaAs photocathodes;
- Co-evaporation process for alkali cathode production.

* Lasers:

- High efficiency frequency conversion crystals;
- Mode-locked high power GHz oscillators;
- Pulse shaping (longitudinal and transversal).

* Guns:

- Very high voltage DC gun (DC/RF photo-injector);
- High charge production without RF gun desorption;
- SRF gun with high QE photocathode.
- PWT gun with pressure < 10⁻¹¹ mbar