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Abstract

In most cases, nonlinearities from magnets must be prop-
erly included in tracking and analysis to properly compute
quantities of interest, in particular chromatic properties and
dynamic aperture. One source of nonlinearities in magnets
that is often important and cannot be avoided is the nonlin-
earity arising at the end of a magnet due to the longitudinal
variation of the field at the end of the magnet. Part of this
effect is independent of the longitudinal of the end. It is
lowest order in the body field of the magnet, and is the re-
sult of taking a limit as the length over which the field at the
end varies approaches zero. This is referred to as a ”hard
edge” end field. This effect has been computed previously
to lowest order in the transverse variables. This paper de-
scribes a method to compute this effect to arbitrary order in
the transverse variables, under certain constraints.

INTRODUCTION

This paper computes the effect of the magnet end fields
to first order in the magnitude of the magnetic field in the
body of the magnet. Thus, at all points in this computation
any effect which is of higher than first order in the magni-
tude of the magnetic field will be dropped. In addition, the
fields are assumed to be varying only over a short distance.
The computation will be done in the limit that this distance
goes to zero. This effect will be shown to be independent
of the longitudinal of the end field.

Computing this “hard-edge” end effect can be an impor-
tant design tool. Computing the end field profile for a real
magnet is very time-consuming. But a lattice design pro-
cess must progress rapidly, and cannot re-design magnets
every time the lattice parameters change. The hard-edge
end effect allows one to have a reasonable estimate for
the effects of the ends without knowing the details of the
magnet construction. One can thus compute chromatic ef-
fects on the linear functions and dynamics apertures, for
instance, that for some machines may be significantly af-
fected by these end fields.

Performing the computation to lowest order in the body
field should become more accurate as the magnet gets
longer compared to its aperture. Most accelerator systems
are designed such that the effect of the magnet ends is small
compared to the effect of the body of the magnet. Further-
more, this computation finds an effect which is independent
of the longitudinal profile of the end field; terms higher or-
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der in the end field are expected to depend on the longitudi-
nal of the end field: imagine a kick-drift-kick combination
where the kicks are taken at two different points in the end
field. This effect is second order in the body magnetic field,
but seems to depend on the precise longitudinal of the end.

The magnetic field as a function of distance s along a
reference orbit is assumed to be proportional to a function
of the transverse position times a function SL(s). SL(s)
is zero for s < −L/2, one for s > L/2, and is infinitely
differentiable everywhere. An example of such a function
would be

SL(s) =






0 s < −L/2
1

1 + e−4
√

3sL/(L2−4s2)
−L/2 < s < L/2

1 s > L/2.
(1)

If the field does not go from zero to a finite value, but in-
stead goes between two constant values, the derivation will
not change, and all that will matter is the change in the field
from beginning to end.

Because all computations will involve integrating from
−L/2 to L/2 and then taking the limit as L → 0, the inte-
gral of any function of SL will be zero in the limit L → 0.
Furthermore, it will be assumed that no integrals involve
products of SL with itself or its derivatives. This is equiva-
lent to the statement that the computation will only be per-
formed to first order in the field values, plus the assumption
that the metric of the coordinate system (either for the field
definition or the reference orbit) is not varying on the scale
of L. This latter constraint requires special handling for
magnets which are considered to be in a curvilinear coor-
dinate system within the magnet and a straight coordinate
system just outside the magnet. The correct handling of
this situation must reflect the magnet construction: is the
end of the magnet better represented as being straight or by
curving with the body of the magnet?

This problem has been addressed to lowest nontrivial or-
der in the transverse variables [1]. Here we show how to
perform the computation to arbitrary order in the transverse
variables.

LIE ALGEBRAIC COMPUTATION

Begin with the Hamiltonian in the form

H = Hp −Hq (2)

Hp is independent of magnetic field, and Hq is first order
in the magnetic field. Terms that are higher order in the
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magnetic field are dropped in this computation. We wish to
compute the map going through the magnet end.

The map can be written in Lie algebraic notation as

e:fp(s):e:fq(s):, (3)

where
d

ds
e:fp(s): = −e:fp(s)::Hp:. (4)

Only terms in fq which are first order in Hq will be com-
puted. In the limit L → 0, fp(L/2) → 0, since Hp is
finite.

One can write down a differential equation for fq [2, 3]:

iex(−:fq:)
dfq

ds
= Hq + (e−:fq : − 1)Hp, (5)

where

iex(x) =
ex − 1

x
= 1 +

x

2
+

x2

6
+ · · · . (6)

Write f as a series

fq(s) =
∑

k=1

fk(s). (7)

Begin with

f1(s) =
∫ s

−L/2

Hq(s̄) ds̄. (8)

Then, ignoring terms that are more than first order in Hq,

fn+1(s) =
∫ s

−L/2

[Hp, fn(s̄)] ds̄. (9)

The series does in fact converge, in the sense that each
term is of higher order in the transverse variables than the
next. First, note that in the limit L → 0,

∫ L/2

−L/2

ds1

∫ s1

−L/2

ds2 · · ·
∫ sn−1

−L/2

dsn S(k)
L (sn) = δkn.

(10)
Next, note that the term a magnetic field expansion satis-
fying Maxwell’s equations that is proportional to the kth
longitudinal derivative of the magnetic field has a higher
minimum order in some quantities (usually the transverse
coordinates) than the term proportional to the (k−1)st lon-
gitudinal derivative. Furthermore, to lowest order, Hp is
second order in the transverse phase space variables. The
result is that fn is of higher order in the transverse variables
than fn−1.

Evaluating the map only need be done to first order in
fq, since the map is only correct to that order anyhow. One
method which should work well is the implicit midpoint
rule

zf = zi + fq

(
zi + zf

2

)

. (11)

This happens to be second order in the transverse variables,
but is probably not any slower than any first order method.
Operator splitting methods are unlikely to work well, since

f cannot easily be written as a sum of integrable pieces.
One could conceive of writing it as a series of monomi-
als, which are integrable [4, 5], but the implicit midpoint
method is simpler and likely to be comparably fast to eval-
uate.

Accelerator Hamiltonian

To first order in the fields, the accelerator Hamiltonian in
unscaled variables is

− (1 + hxx + hyy)ps − q(1 + hxx + hyy)As

− q(1 + hxx + hyy)
pxAx + pyAy

ps
, (12)

where

ps =
√

(E/c)2 − (mc)2 − p2
x − p2

y. (13)

The first term above is Hp, and the sum of the last two
terms is −Hq. Thus, [Hp, f ] is

−
[

hxps
∂f

∂px
+ hyps

∂f

∂py

+ (1 + hxx + hyy)
(

px

ps

∂f

∂x
+

py

ps

∂f

∂y

)]

. (14)

EXAMPLE

Assume that By0(x) = By(x, 0) is given in the body of
the magnet; its change at the end of the magnet is ∆By0(x).
Its variation is assumed to be a function of s times By0(x).
Maxwell’s equations will give the components of the field
which are higher order in y. Then the generating function
fq is, to the lowest three nontrivial orders in the vertical
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phase space variables,

fq =
qy2px

2ps
∆By0(x)

−
(

qpxp2
yy2

2p3
s

∆By0(x) +
qpyy3

6ps

∂∆By0(x)
∂x

+
qp2

xpyy3

3p3
s

∂∆By0(x)
∂x

+
qpxy4

12ps

∂2∆By0(x)
∂x2

+
qp3

xy4

24p3
s

∂2∆By0(x)
∂x2

)

+
(

qpxp4
yy2

2p5
s

∆By0(x) +
qp3

yy3

6p3
s

∂∆By0(x)
∂x

+
2qp2

xp3
yy3

3p5
s

∂∆By0(x)
∂x

+
5qpxp2

yy4

24p3
s

∂2∆By0(x)
∂x2

+
qp3

xp2
yy4

4p5
s

∂2∆By0(x)
∂x2

+
qpyy5

60ps

∂3∆By0(x)
∂x3

+
7qp2

xpyy5

120p3
s

∂3∆By0(x)
∂x3

+
qp4

xpyy5

30p5
s

∂3∆By0(x)
∂x3

+
qpxy6

240ps

∂4∆By0(x)
∂x4

+
qp3

xy6

240p3
s

∂4∆By0(x)
∂x4

+
qp5

xy6

720p5
s

∂4∆By0(x)
∂x4

)

.

The lowest order term is just the classical edge focusing
in a bending magnet. However, even that contains more
information than the classical result: the full field profile
should be used, not just the linear part. In fact, if one is only
interested in the effect on the tunes, the first term gives the
complete effect to lowest order in ∆By0. One can even get
some rudimentary nonlinear effects from that term. One
can easily generate higher order terms if desired.

One could perform a similar computation using a multi-
pole representation of the field, or in a curvilinear geome-
try. It turns out that the first term is correct even for nonzero
horizontal curvature. It is not clear whether or not that is
true for the higher order terms. The results will be different
for a multipole expansion than for the midplane expansion
shown above, even though the two representations give the
same field in the body of the magnet where there is no lon-
gitudinal variation of the field. The choice of expansion
must depend on the symmetries which are expected in the
magnet construction.

CONCLUSIONS

We have shown how to compute the effect of fringe fields
to lowest order in the body field strength and to arbitrary or-
der in the transverse variables. The effect is independent of
the longitudinal profile of the end field, but does depend
on the manner in which the field expansion is performed
(which is related to the construction symmetry of the mag-
net).
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