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Abstract

We exstend Gluckstern results for the electric and mag-
netic polarizabilities of pumping holes in the wall of a cir-
cular liner surrounded by a co-axial circular shield to arbi-
trary non-circular geometries. The result is used for evalu-
ating the pertinent beam coupling impedances in terms of
a general perturbative formula using equivalent impedance
boundary conditions at the liner’s wall.

INTRODUCTION

The effect of pumping holes on beam dynamics and
stability is a critical issue and has been carefully investi-
gated, both theoretically [1] and experimentally [2]. We
introduced accurate analytic approximants for beam cou-
pling impedances in pipes with complex geometries and/or
constitutive properties based on impedance (Leontóvich)
boundary conditions [3], which cover the case of perforated
walls [4]. The mentioned approach allows to account easily
for the effect of a co-axial shielding tube, by suitable mod-
ification of the relevant electric and magnetic hole polariz-
abilities in the impedance boundary conditions. Such mod-
ified polarizabilities were first introduced and computed by
Gluckstern [5] and re-derived in [4], for the special case of
circular co-axial geometries. In this paper we extend the
analysis to general co-axial geometries.

BEAM COUPLING IMPEDANCES IN
PERFORATED LINERS FROM

IMPEDANCE BOUNDARY CONDITIONS

The specific longitudinal and transverse beam coupling
impedances Z0,‖(ω) and ¯̄Z0,⊥(ω) of a simple, unperturbed
pipe (e.g., circular, perfectly conducting) assumed known,
can be related to those Z‖(ω), ¯̄Z⊥(ω) of another pipe dif-
fering from the former by some perturbation in the bound-
ary geometry and/or constitutive properties, as follows [3]:
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where c = (ε0µ0)−1/2 is the speed of light in vacuum,
Y0 = 1/Z0 = (ε0/µ0)1/2 is the vacuum characteristic ad-
mittance, k0 = ω/c is the wavenumber, ε0 and µ0 being the
vacuum permittivity and permeability, β0 is the relativistic
factor, Q is the total beam charge , �E

(sol.)
0 , �E

(irr.)
0 are the

solenoidal and irrotational parts of the electric field in the
unperturbed pipe, Zw is the (Leontóvich) pipe-wall com-
plex characteristic impedance, and ∂S is the pipe cross-
section boundary. The first integral term on the r.h.s of (1)
and (2) accounts for the effect of the finite wall conductiv-
ity, and is nonzero if and only if Zw is not identically zero
on ∂S. The second integral on the r.h.s. of (1) and (2), on
the other hand, accounts for the effect of the geometrical
perturbation of the boundary, and is non-zero if and only
if the unperturbed axial field component E0z is not identi-
cally zero on ∂S1.

Equations (1), (2) can be applied to the case of perfo-
rated walls. In [4] we shew, following both an heuristic ar-
gument and a rigorous boundary value problem approach,
that for near-to-grazing incidence, a plane perforated con-
ducting surface can be described using a Leontóvich b.c.,
with wall-impedance

Zw = −jk0Z0nσ(αm + αe), (3)

where αe, αm are the (internal) electric and magnetic
hole polarizabilities [6] and nσ the hole surface-density.
Equation (3) can be used for a non-planar perfectly con-
ducting perforated surface provided the further condition:
|(Z0/Zw) k0 RS | � 1 is satisfied, where Rs is the (local)
smallest radius of curvature of the perforated surface S, ac-
cording to [7].

Let � the arc-lenght along the pipe cross-section contour,
assume Nλ (uniformly spaced) holes per unit pipe lenght2,
and let nσ = Nλδ(�− �h), Then, from (1) and (3),

Z‖ = − jZ0k0Nλ(αe + αm) en(�h)e∗n(�h), (4)

where en(�h) = (Q/ε0)−1En(�h), En(�h) being the (nor-
mal) electric field produced by an axial beam with total
charge Q at the hole’s position. Equation (4) reproduces
Kurennoy’s result valid for general transverse geometries,
obtained using a different rigorous (modal) approach [8].

1The beam impedances are obviously independent of the total beam
charge, as the field in (1) is proportional to Q.

2For the very definition of beam impedance to apply, the holes should
be (at least piecewise) uniformly-distributed in the longitudinal direction.
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MODIFIED POLARIZABILITIES

For an infinite3 perforated beam pipe surrounded by a
co-axial shield (e.g., the LHC cold-bore) eq. (3) still holds,
provided we use modified polarizabilities:

αe,m = α(i)
e,m + Fα(e)

e,m, (5)

where the suffixes e,m refer to the electric and magnetic
polarizabilities, while the superfixes (e), (i) denote the ex-
ternal and internal ones. This result was first obtained by
Gluckstern [5] for the special case of circular co-axial ge-
ometry, and rederived in [4], following a different route.
Here we extend this result to pipes with general transverse
geometry, by providing an appropriate explicit expression
for F , viz.:
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where δS = (|k0|Z0)−1 Z∗wall is the complex EM penetra-
tion depth into (both, assumed equal) coaxial region walls,
∂Sc is the (complete) contour of the co-axial region cross-
section, ecb is the transverse electromagnetic (henceforth
TEM) eigenfunction in the co-axial region, �h identifies the
hole position on the liner cross section boundary, and Nλ

the longitudinal hole density.
The effect, e.g., of a non-zero wall thickness can be read-

ily included [9], [10], [11].

PERFORATED BEAM PIPE IN A
CO-AXIAL SHIELD

We shall work in the spectral domain (z − βct −→ k),
and assume that the spectral content of the primary field
is such that only the fundamental (TEM) mode may prop-
agate in the coaxial region. The electric (magnetic) field
component normal (tangential) to the wall will be denoted
by E0 (resp. H0) and Ecb (resp. Hcb) in the liner and coax-
ial region (cold-bore), respectively. We shall assume the
holes to be located at � = �h and z = L, 2L, ....

In the presence of an external co-axial tube, the elemen-
tary sources radiating into the liner will be Bethe dipoles at
� = �h, z = lL with moments
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Equation (7) can be equally written:
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which involves only the liner (unperturbed) fields, and cor-
responds to assuming that the liner stands in vacuo, and

3More realistically, the argument applies to ring machines provided
(bunch lenght)� (ring circumference).

using the modified polarizabilities (5) for the liner’s holes,
to account for the effect of the coaxial region, in computing
the perforated wall impedance
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In order to evaluate F in eq. (8), we proceed as follows.
The TEM field set up in the coaxial region by a single

hole at � = �h, z = lL, i.e., by the Bethe dipoles with
moments:
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can be written:{
�E ±

cb = C±
l �ecb(�h) e∓jkg(z−lL)

�H ±
cb = ±Y0 ûz × �ecb(�h) e∓jkg(z−lL),

(11)

where the superfix ± applies to z
>
< lL and kg is the

TEM propagation constant in the coaxial region. The co-
efficients C±

l are readily evaluated by resorting to Lorentz
(reciprocity) theorem in the form [12]:∫∫

∂V

( �Ecb × �H± − �E± × �Hcb) · �n dΣ =

−jωµ0
�H±(lL) · �Ml + jω�E±(lL) · �Pl, (12)

where V is a slice of the coaxial region limited by the
planes z = lL ± δ (δ as small as one wishes), ∂V is its
boundary, and (�E±, �H±) is a source-free forward or back-
ward TEM field

�E±=�ecb(�ρ) e∓jkgz, �H±=±Y0ûz×�ecb(�ρ)e∓jkgz, (13)

where �ρ is the transverse position. Following [5] we shall
make the assumption that the backward fields can be ne-
glected. Indeed the TEM waves produced by the Bethe
dipoles (holes) accumulate coherently in the forward direc-
tion, as they travel at the same speed as the primary field of
an (assumed) ultrarelativistic particle in the liner. The hole
spacing is assumed to be such that no backward phasing
may occur within the spectrum of the primary field.

The total (forward propagating) field at � = �h and z =
pL, is thus obtained by summing over all l < p:

Ecb(�h, pL) =
∑
l<p

−jk ecb(�h)

2
∫
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At this point we postulate Ecb(�h, pL) = FE0(�h, pL),
and assume F as independent of p, because the (infinite)
structure is invariant under the group of z-translations by
multiples of L.

Then we use the obvious identity

E0(�h, lL) = E0(�h, pL)e−jkg(p−l)L (15)
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and formally sum the geometric series in (14),

∑
l<p

ej(kg−k)(p−l)L =
1

1− ej(kg−k)L
≈ −1

j(kg − k)L
, (16)

where the last approximation is justified in view of the
expected smallness of the exponent. To evaluate the dif-
ference kg − k we note that the free-space wavenumber
k is equal to the loss-free TEM propagation constant in
the coaxial region [12]. The first order formula [13] for
the (longitudinal) wavenumber in a lossy-wall waveguide
gives:

kg − k = − jY0Zw

∮
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∫
Sc

e2
cb(�ρ)dS

, (17)

where ecb is the (unperturbed, perfect conductor) TEM
eigenfunction in the co-axial region, ∂Sc is the (complete)
contour of the co-axial region cross-section, and Zcb is the
(complex) characteristic impedance of the coaxial region
walls.

From (14) to (17) after a little algebra we get

F =
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where δS = (|k0|Z0)−1 Z∗wall . is the complex EM pen-
etration depth into (both, assumed equal) coaxial region
walls4.

For a circular pipe with radius r = b in a coaxial circular
tube of radius r = a equation (18) gives back [4]:

F = − α
(e)
e + α

(e)
m

α(i)
e + α(i)

m + j sgn(k)δ∗sN−1
λ (1 + b/a)

, (19)

which coincides with Gluckstern result [5].

COMPARISON WITH MEASUREMENTS

The parasitic losses in the co-axial region have been
computed in [2] following a different approach, in terms
of the equivalent co-axial transmission line current Icb, and
compared favorably with measurements. In view of the
obvious relationship between this latter and the magnetic
field in the co-axial region, one gets (for a pointlike bunch
I(z, t) = Qβcδ(z− βct)): |F | = |Icb(z, ω)/I(z, ω)| . The
result obtained and validated in [2] is remarkably recov-
ered, provided |α(i)

e + α
(i)
m | � |n−1

σ δ̂(1 + b/a)|, which
holds true under the assumptions made in [2].

4Note that in some previous papers [5] the complex character of Zw is
apparently overlooked.
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