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Abstract

We compute the multipole expansion of the Green’s
function for an off-axis point particle running at constant
velocity parallel to the axis of circular pipe with finite wall
conductivity and thickness.

INTRODUCTION

Wake fields describe the interaction between a particle
beam and the surrounding pipe wall. For perfectly con-
ducting pipes and ultrarelativistic motion (v = c) wake-
fields are negligibile. In the realistic case of walls of fi-
nite conductivity, and/or relatively low values of the rela-
tivistic factor γ, occurring, e.g., at injection, wake fields
might be quite relevant. In addition, for low revolution fre-
quencies, the finite thickness of the pipe wall should be
properly taken into account [1]. Much has been written
on the subject of wake fields, since the early work of Pi-
winski [2], who first studied the opposite limiting cases of
a metal-coated ceramic vacuum chamber, where the coat-
ing is much thinner than the EM penetration depth, and
of a homogeneous conducting pipe, much thicker than the
EM penetration depth. Palumbo and Vaccaro extended Pi-
winsky’s results for this latter case, by computing higher
order wake-field multipoles [3]. Chao first gave a for-
mula which fully exploits the dependence of the wake-
field on the pipe wall thickness, but his analysis was re-
stricted to the monopole term [4]. More recently, Ohmi
and Zimmerman presented a thorough analysis of the sub-
relativistic effect [5]. Finally, Yokoya and Shobuda stud-
ied the finite-conductivity, finite-thickness pipe-wall prob-
lem, in the frame of a transmission line analogy, which can
be applied to beam pipes with general transverse geome-
try and multi-layered walls, in the limit where the EM skin
depth is much smaller than the (smallest) pipe transverse
dimension [6].

In this communication we solve in full generality the
problem of computing the wake field multipoles set up by
an (offset) multi-bunch beam in a circular pipe with finite
wall conductivity and thickness. The simplest circular ge-
ometry is considered. The exploited solution is exact but
complicated, so that in most cases of practical interest one
may resort to suitable limiting forms which are discussed
in a companion paper.

THE WAKE FIELD

In this section we compute the Fourier transform of the
wake potential Green’s function produced by a point charge

qo running at a constant velocity βcûz , at an azimuthal co-
ordinate θo and a distance ro off axis of a circular cylindri-
cal pipe with an inner radius b, conductivity σ, finite thick-
ness ∆.

In order to compute the Green’s function within the hol-
low pipe (r < b), one has to write down the solution also in
the conducting wall (b ≤ r ≤ b+∆), and outside the beam
liner (r > b + ∆), and enforce all needed boundary condi-
tions. Here we limit ourselves to sketching the procedure
and giving the final result. Full details will be published
elsewhere.

The charge density of a (bunched) beam running parallel
to the pipe axis, while preserving its longitudinal profile,
can be written as the product of a transverse and longitudi-
nal density

ρ(r, θ, ξ) = ρt(r, θ) f(ξ), (1)

where r and θ are the radial and azimuthal coordinate re-
spectively, and ξ = z − βct. The related (scalar) potential
Φ depends in turn on z and t only through ξ, and the wave
equation for Φ accordingly reads:

∇2
t Φ +

1
γ2

∂2Φ
∂ξ2

= −ρ(r, θ, ξ)
ε0

, (2)

where as usual γ = (1 − β2)−1/2. Given the (running)
point source

δ(r, θ, ξ|r0, θ0, ξ0) =
δ(r − ro)

ro
δ(θ − θ0)δ(ξ − ξ0), (3)

we shall seek the associated potential G (Green’s function),

∇2
t G +

1
γ2

∂2G

∂ξ2
= −δ(r, θ, ξ|r0, θ0, ξ0)

ε0
. (4)

The general solution of (2) can be written:

Φ(r, θ, ξ) =
∫ 2π

0

rodθo

∫ b

0

dr0·

∫ ∞

−∞
dξ0 ρt(r0, θ0)f(ξ0) G(r, θ, ξ|r0, θ0, ξ0). (5)

in view of the obvious representation

ρ(r,θ,ξ)=
∫ 2π

0

r0dθ0

∫ b

0

dr0·

∫ ∞

−∞
dξ0 ρt(r0,θ0)f(ξ0)δ(r, θ, ξ|r0, θ0, ξ0), (6)

Proceedings of EPAC 2004, Lucerne, Switzerland

2065



and of the linearity of Eq.(2). The solution of (4) admits
the following Fourier representation, where φ = θ − θ0

and s = ξ − ξ0:

G(s, r, r0, φ) =
∞∑

m=−∞
Gm(s, r, r0)eimφ,

where:

Gm(s, r, r0) =
1
2π

∫ +∞

−∞
G̃m(k, r, r0)eiksdk. (7)

Inserting Eq.s (7) into Eq.(5) we get:

Φ(r, φ, s) =
1
2π

∞∑
m=−∞

eimφ

(∫ b

0

r0dr0 ρt,m(r0)

)
·

∫ ∞

−∞
G̃m(k, r, r0)F (k) eiksdk , (8)

where:

ρt,m(r0) =
1
2π

∫ 2π

0

ρt(r0, θ0) eimθ0 dθ0, (9)

F (k) =
∫ ∞

−∞
f(s) e−iks ds, (10)

are the (transverse) source azimuthal harmonic and the
Fourier spectrum of the longitudinal source profile, respec-
tively.

The unknowns G̃m(·) in Eq.(8) are readily found. Using
the obvious identities

δ(s) =
1
2π

∫ +∞

−∞
eiksdk, δ(φ) =

1
2π

∞∑
m=−∞

eimφ, (11)

in Eq.s(3), (4) one readily gets an equation for
G̃m(k, r, r0):

d2G̃m

dr2
+

1
r

dG̃m

dr
−

[
m2

r2
+

(
k

γ

)2
]
G̃m =− 1

2πε0

δ(r−r0)
r0

,

(12)
whose solution is a superposition of modified Bessel func-
tions Im and Km, viz.:

G̃m(k,r,r0)=
q0

2πε0

{
A(k, r, r0) + BmIm

(
kr

γ

)}
, (13)

where

A(k, r, r0)=




Km

(
kr

γ

)
Im

(
kr0

γ

)

Km

(
kr0

γ

)
Im

(
kr

γ

)

 r0 ≤ r ≤ b,

r≤r0,

(14)
and the constant Bm follows by enforcing suitable bound-
ary conditions at r = b. For the special case of a perfectly

conducting wall (σ −→∞), which will be henceforth iden-
tified with the∞ superscript, one has:

G̃∞
m (k, r, r0) =

qo

2πεo
·




A(k, r, r0)−
Im

(
kro

γ

)

Im

(
kb

γ

) Km

(
kb

γ

)
Im

(
kr

γ

)



,

(15)
For a pipe with finite wall conductivity and thickness, one
has to write down the unknown Green’s function, by solv-
ing suitable (homogeneous) equations also in the b ≤ r ≤
d and r ≥ d regions, d = b + ∆ being the external pipe
radius, in order to write down the boundary conditions at
r = b and r = b + ∆ needed to determine Bm. After some
lenghty algebra we get the following solution describing
the Green function for r ≤ b:

G̃m(k, r, r0) = G̃∞
m (k, r, r0)+

qo

2πεo

γ Im

(
kro

γ

)
Im

(
kr

γ

)

b k Im

(
k b

γ

) N(k)
D(k)

, (16)

where:

N(k)= k̄2K ′
m(k′d)

[
Im

(
k̄b

)
Km

(
k̄d

)
−Im

(
k̄d

)
Km

(
k̄b

)]
+

+η k̄k′Km(k′d)
[
Km

(̄
kb

)
I ′m

(
k̄d

)
−Im

(
k̄b

)
K ′

m

(
k̄d

)]
, (17)

D(k)=k̄2I ′m(k′b)K ′
m(k′d)

[
Im

(
k̄b

)
Km

(
k̄d

)
−Im

(̄
kd

)
Km

(̄
kb

)]
+ηk̄k′Im(k′b)K ′

m(k′d)
[
K ′

m

(
k̄b

)
Im

(
k̄d

)
−I ′m

(
k̄b

)
Km

(
k̄d

)]
+ηk̄k′Km(k′d)I ′m(k′b)

[
I ′m

(
k̄d

)
Km

(̄
kb
)
−K ′

m

(
k̄d

)
Im

(
k̄b

)]
+η2k′2Im(k′b)Km(k′d)

[
I ′m

(̄
kb

)
K ′

m

(̄
kd

)
−I ′m

(̄
kd

)
K ′

m

(̄
kb

)]
(18)

with k′ = k/γ and

η =
Zoσ

ikβ
− 1. (19)

It can be checked that Eq.(16) reduces to the solution ob-
tained in [3] in the limit d →∞ of an infinitely thick wall.

BUNCHED BEAM SPECTRA

In storage rings and circular machines the beam is a pe-
riodic train of bunches, with spatial period Ts = Lc/Nb,
where Lc is the ring circumference and Nb the total num-
ber of bunches. The function f(·) in Eq.(1) is thus:

f(s) =
∞∑

n=−∞
fnei2π(Nb/Lc)n s, (20)

where:

fn =
Nb

Lc

∫
[Lc/Nb]

f(s)e−i2π(Nb/Lc)n sds
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≈ Nb

Lc
F1

(
2π

Nb

Lc
n

)
, (21)

and F1 is the Fourier transform of a single bunch with as-
sumed typical length σs � Lc/Nb.
From Eq.s (10), (20) and (21) we get:

F (k) =
∫ ∞

−∞
f(s)e−iks ds =

= 2π
(

Nb

Lc

) ∞∑
n=−∞

F1

(
2π

Nb

Lc
n

)
δ

(
k − 2π

Nb

Lc
n

)
.

(22)
Inserting Eq.(22) into Eq.(8) we get:

Φ(r, φ, s)=
∞∑

m=−∞
eimφ

(∫ b

0

rodro ρt,m(ro)

)
Nb

Lc
· (23)

∞∑
n=−∞

F1

(
2π

Nb

Lc
n

)
G̃m

(
2π

Nb

Lc
n, r, r0

)
exp

(
i 2π

Nb

Lc
ns

)
.

Note in passing that the n = 0 term in Eq.(23) gives no con-
tribution to the wake-field, being (longitudinally) constant,
and can be accordingly discarded. The sums in Eq.s(20),
(22) and (23) can be truncated at |n| ∼ NT , where:

NT ∼
Lc

2πNb

α

σs
, (24)

i.e. at the border of the (single) bunch spectrum kb ∼ α/σs,
where σs is the bunch length, and α is a factor of order
one. The spectral argument k in G̃m(·) and F1(·) in Eq.(23)
takes therefore only values that are integer multiples of the
fundamental wavenumber:

k = n

(
2πNb

Lc

)
, n = −NT , . . . , NT , (25)

Using the typical numbers, we get 0.6̄ m−1 ≤ k ≤
13.3̄ m−1 for LHC, whereas for short-bunch small-ring
machines, like DAFNE, 7.7 m−1 ≤ k ≤ 50 m−1.

CONCLUSIONS

In this paper we presented a rigorous computation of
the Green’s function for an (off-axis) multi-bunch beam
running at constant velocity parallel to the axis of circu-
lar pipe with finite wall conductivity and thickness. More
or less trivial extensions include more complicated geome-
tries (e.g., elliptical, square). The solution is exact but not
handy. Appropriate asymptotic forms are discussed in a
companion paper.
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