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Abstract

We compute the multipole expansion of the Green’s
function for an off-axis point particle running at constant
velocity parallel to the axis of circular pipe with finite wall
conductivity and thickness.

INTRODUCTION

Wake fields describe the interaction between a particle
beam and the surrounding pipe wall. For perfectly con-
ducting pipes and ultrarelativistic motion (v = ¢) wake-
fields are negligibile. In the realistic case of walls of fi-
nite conductivity, and/or relatively low values of the rela-
tivistic factor ~, occurring, e.g., at injection, wake fields
might be quite relevant. In addition, for low revolution fre-
quencies, the finite thickness of the pipe wall should be
properly taken into account [1]. Much has been written
on the subject of wake fields, since the early work of Pi-
winski [2], who first studied the opposite limiting cases of
a metal-coated ceramic vacuum chamber, where the coat-
ing is much thinner than the EM penetration depth, and
of a homogeneous conducting pipe, much thicker than the
EM penetration depth. Palumbo and Vaccaro extended Pi-
winsky’s results for this latter case, by computing higher
order wake-field multipoles [3]. Chao first gave a for-
mula which fully exploits the dependence of the wake-
field on the pipe wall thickness, but his analysis was re-
stricted to the monopole term [4]. More recently, Ohmi
and Zimmerman presented a thorough analysis of the sub-
relativistic effect [5]. Finally, Yokoya and Shobuda stud-
ied the finite-conductivity, finite-thickness pipe-wall prob-
lem, in the frame of a transmission line analogy, which can
be applied to beam pipes with general transverse geome-
try and multi-layered walls, in the limit where the EM skin
depth is much smaller than the (smallest) pipe transverse
dimension [6].

In this communication we solve in full generality the
problem of computing the wake field multipoles set up by
an (offset) multi-bunch beam in a circular pipe with finite
wall conductivity and thickness. The simplest circular ge-
ometry is considered. The exploited solution is exact but
complicated, so that in most cases of practical interest one
may resort to suitable limiting forms which are discussed
in a companion paper.

THE WAKE FIELD

In this section we compute the Fourier transform of the
wake potential Green’s function produced by a point charge

o Funning at a constant velocity Scii, , at an azimuthal co-
ordinate 6, and a distance r,, off axis of a circular cylindri-
cal pipe with an inner radius b, conductivity o, finite thick-
ness A.

In order to compute the Green’s function within the hol-
low pipe (r < b), one has to write down the solution also in
the conducting wall (b < r < b+ A), and outside the beam
liner (r > b+ A), and enforce all needed boundary condi-
tions. Here we limit ourselves to sketching the procedure
and giving the final result. Full details will be published
elsewhere.

The charge density of a (bunched) beam running parallel
to the pipe axis, while preserving its longitudinal profile,
can be written as the product of a transverse and longitudi-
nal density

p(r,&,&) :pt(r?e) f(g)v 1)

where r and 6 are the radial and azimuthal coordinate re-
spectively, and £ = z — Bct. The related (scalar) potential
® depends in turn on z and ¢ only through &, and the wave
equation for @ accordingly reads:
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where as usual v = (1 — 3%)~/2. Given the (running)
point source
o(r—ro)
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we shall seek the associated potential G (Green’s function),
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The general solution of (2) can be written:
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in view of the obvious representation
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and of the linearity of Eq.(2). The solution of (4) admits
the following Fourier representation, where ¢ = 6 — 6,

and s = £ — &:
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where:
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Inserting Eq.s (7) into Eq.(5) we get:
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are the (transverse) source azimuthal harmonic and the
Fourier spectrum of the longitudinal source profile, respec-
tively.

(10)

The unknowns G, (-) in Eq.(8) are readily found. Using
the obvious identities
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in Eq.s(3), (4) one readily gets an equation for
Gk, 7, 10):
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whose solution is a superposition of modified Bessel func-
tions I,,, and K,,, viz.:
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and the constant B,, follows by enforcing suitable bound-
ary conditions at » = b. For the special case of a perfectly

where

TOSer7

A(k,ryro)= r<ro.

conducting wall (¢ — o0), which will be henceforth iden-
tified with the oo superscript, one has:
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For a pipe with finite wall conductivity and thickness, one
has to write down the unknown Green’s function, by solv-
ing suitable (homogeneous) equations also inthe b < r <
d and r > d regions, d = b + A being the external pipe
radius, in order to write down the boundary conditions at
r =band r = b+ A needed to determine B,,,. After some
lenghty algebra we get the following solution describing
the Green function for r < b:
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It can be checked that Eq.(16) reduces to the solution ob-
tained in [3] in the limit d — oo of an infinitely thick wall.

n= -1 (19)

BUNCHED BEAM SPECTRA

In storage rings and circular machines the beam is a pe-
riodic train of bunches, with spatial period T, = L./Ny,
where L. is the ring circumference and N, the total num-
ber of bunches. The function f(-) in Eq.(1) is thus:
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where:
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and F; is the Fourier transform of a single bunch with as-
sumed typical length o < L./Ny.
From Eq.s (10), (20) and (21) we get:

F(k) = f(s)e™*s ds =
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Inserting Eq.(22) into Eq.(8) we get:
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Note in passing that the n = 0 term in Eq.(23) gives no con-
tribution to the wake-field, being (longitudinally) constant,
and can be accordingly discarded. The sums in Eq.s(20),
(22) and (23) can be truncated at |n| ~ N, where:

L. «
2Ny o5’

i.e. at the border of the (single) bunch spectrum k;, ~ /o,
where o, is the bunch length, and « is a factor of order
one. The spectral argument k in G, (-) and F} (+) in Eq.(23)
takes therefore only values that are integer multiples of the
fundamental wavenumber:

Np ~

(24)

21 N,
k:n(ﬂ b), n=—Nrp,...,Nr, (25)

Using the typical numbers, we get 0.6 m~' < k <
13.3 m~! for LHC, whereas for short-bunch small-ring
machines, like DAFNE, 7.7m~ ' < k <50m~1.

CONCLUSIONS

In this paper we presented a rigorous computation of
the Green’s function for an (off-axis) multi-bunch beam
running at constant velocity parallel to the axis of circu-
lar pipe with finite wall conductivity and thickness. More
or less trivial extensions include more complicated geome-
tries (e.g., elliptical, square). The solution is exact but not
handy. Appropriate asymptotic forms are discussed in a
companion paper.
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