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In the frame of the SPIRAL 2 project at GANIL [1], we 
present an analytical approach allowing us to understand 
in a simple way the longitudinal behaviour of the beam, 
transmitted in a LINAC designed with QWR or HWR 
cavities. In particular, we make appear the strong 
relationship with the Henon map properties. 
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The best and ultimate way to check the end-to-end 

beam behaviour through a given designed LINAC, and 
perform alignment studies,  is certainly to track a huge 
number of particles through 3D realistic electromagnetic 
fields. (see [2] in the case of SPIRAL 2). 

However, it is useful to dispose of  simplified analytical 
models in order to understand better the origin of 
anomalies and possible emittance growths. In what 
follows, we focus on the longitudinal behaviour of the 
beam when getting through QWR/HWR cavities. 
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It is possible to approach very well the potential and 

electric fields of QWR/HWR cavities with the following  
analytical relations: 

 

��
��

�����

�����

����

	
�


	

�
�
��
�


�
�
�
�


�
�
���

===

+−−=

+−=

++−=

λ
λβ

ππω

ϕω

ϕω

ϕω

;
2

;2

)sin())3cos()(cos(
32

9

)1()sin())3sin(
3

1
)(sin(

16

9

)sin()
9

8
)3cos(

9

1
)(cos(

16

9

0

2
 

 
 
 
 
 
 
 
 
 
 

Figure 1:  Longitudinal Ez(z) component defined by the 
relation (1), for fhf = 88 Mhz and β0=0.07. 
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 By integrating the motion along the accelerating z-axis, 
we obtain the energy gain and deduce an analytical and 
realistic expression of the transit time factor T(s) : 
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We can notice that T(s) is equal to 1 for β=β0, but that it 
does not correspond exactly to the optimum of the curve, 
which is achieved for β0

∗=1.1β0 with T(β0
∗/β0)=1.0115. 

 
 
 
 
 
 
 
 
 
 

Figure 2: Analytical Transit Time Factor T(s) given by (2)  

 
In terms of relative impulsion, the equation (3) becomes : 
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which gives between the central particle with the phase ϕ  
and another one with the phase  ϕ+δϕ  : 
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  This corresponds to the focusing longitudinal linear term 
of the cavity, and an additional second order contribution, 
the  effect of which we will study in what follows.  
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In order to simplify the above expressions, we 

introduce the following notations : 
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Lets’ consider one cell composed of a drift of length L, 

one cavity, and another drift of length L, and let’s 
calculate the evolution of (u,v) : 
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We indroduce the dimensionless variables (x,y) and the 
phase advance per focusing period µ  : 
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which gives a transformation depending only upon µ : 
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  Of course, the tuning of a LINAC does not correspond to 
a constant phase advance along the machine, and we have 
neglected the increase of the energy through the cavity . 
   However, the academic study of the recurrence (un,vn) 
in (7) or (xn,yn) in (8) around the fixed point (0,0) for a 
constant µ  is very instructive: with a small program and 
given values of (µ,ϕ,β0,L), we can generate a huge set of 
initial points (δϕ,δp/p). Then, by applying a big number 
of recurrences, we find out the stable area. The following 
figures correspond to  (ϕ,β0,L) = (30°,0.07,0.5m). 
The figure (3) shows how the particles disappear, and 
how the dynamic apperture is created in the case µ=92°, 
making appear a very small central stable area around the 
fixed point and peripherical tiny islets. 
The figure (4) shows that for µ>90°, the stable area is 
greatly reduced. The figure (5) gives the deformation of a 
bunch initialy matched for each chosen phase advance, 
and going through 2 successive cells : all this confirms 
that even without space charge, a LINAC must be 
designed and tuned in order to work below 90° and to 
limit the emittance growth. 
The figure (6) gives us the dynamic aperture obtained as a 
function of µ, making appear clearly the resonances 
appearing near 90° and 120°, as already mentioned in [4] 
in the case of transverse dynamics with sextupole effects. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 : (δϕ°,δp/p) portrait evolution and final 
acceptance for µ=92°. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 : (δϕ°,δp/p) stable areas  for phase advances per 
period equal to 70°,90°,117° and 155°.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5 : (δϕ°,δp/p) portraits after two cells  for a 

geometrical emittance 57π.mm.mrad, and the phase 
advance values  : µ = 60°,90°,120° and 155. 
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Figure 6 : phase, impulsion and acceptance as a fonction 
of the phase advance per focusing period. 
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Lets’s now reconsider the recurrence given by  (8) : 
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and the Henon recurrence : 
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Except for the particular case µ=90°, the two recurrences 
are equivalent provided that : 
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We  notice that the value µ =120° corresponds to 
4/5~ =α  with a Henon stable region reduced to the fixed 

point  (2/5,-2/5). It corresponds to the nul second 
derivative of the function )(~ µα . 

If we take into account the increase of energy through the 
cavity we obtain : 
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Following the Renormalization Group Reduction method 
mentionned in [5], we can introduce a formal parameter ε 
in the nonlinear term of [8]. Then we make appear 
analyticaly and successively the resonances 120° , 90° , 
72 °etc…. 
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The use of simplified nonlinear recurrences in the 

longitudinal phase plane allows us to make clearly appear 
the resonances for phase advances equal to 90° and 120° 
(and also others which are less dangerous). Moreover the 
Henon map approach and the RG method, with one or 
several cavities per cell, and generalized to variable 
coefficients, could give a useful tool to understand better 
the longitudinal beam behaviour in a LINAC. 
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