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Abstract 
 Damping wigglers will be installed in the storage ring 

PETRA III to control the beam emittance to 1 nmrad. 
These wigglers will produce linear and non-linear 
perturbations on beam dynamics. The wiggler fields are 
derived from numerical field calculations. Halbach 
equations are used to describe the wiggler field 
analytically. A new expanded transport matrix method is 
developed to solve linear dynamics, and used to match 
linear lattice functions. The symplectic method is adapted 
to track particle through the whole ring including the 
damping wigglers. According to presently known field 
quality, the non-linear effects of damping wigglers will 
not degrade the performance of PETRA III. The dynamic 
aperture is still larger than the physical aperture. 

INTRODUCTION 
DESY will rebuild the PETRA storage ring into a 

dedicated synchrotron radiation light source [1]. The 
basic idea is to keep the lattice structure on seven eighths 
of the PETRA II machine whereas one eighth will be 
completely reconstructed. This new octant consists of 9 
double-bend achromat (DBA) cells with zero dispersion 
straight sections for the installation of eight 5 m 
undulators and one 20 m undulator. The main 
contribution to the horizontal storage ring emittance 
comes from the seven old octants consisting of FODO 
cells with a phase advance of 72 deg. Together with the 
new octant including undulators this leads to a horizontal 
emittance of 4 nmrad. For a further reduction of the 
emittance down to 1 nmrad, it is planned to install 
damping wigglers in long dispersion free straight sections 
[2]. A total length of about 80m is available for damping 
wiggler magnets.  

The main beam dynamics issues arise from the fact that 
the wigglers field is varying strongly in the direction of 
the beam. Most of the effects will cancel over one wiggler 
period, while some non-linear particle motion arises from 
the effect that the particle trajectory oscillates in phase 
with the main wiggler field. This leads to a decrease of 
dynamic aperture due to the existence of non-linear 
motion. Simultaneously vertical linear focusing is created 
by the fringe fields and is mainly a function of the wiggler 
field and period length, while horizontal linear focusing is 
influenced by the horizontal field roll-off and thus the 
pole width. In this paper the study of linear and non-linear 
dynamics influenced by the damping wigglers and 
undulators is described. 

WIGGLER FIELD AND HAMILTONIAN 
Analytical descriptions of wiggler fields are usually 

given in form of the so-called Halbach equations in 
Cartesian coordinates [3], 
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where 222
iyixi kkk =+ , iik λπ2= is the wave number of 

ith harmonic along longitudinal direction, iB  is its peak 
magnetic field amplitude. Sometimes it is convenient to 
define the ratio of transverse gradient 222

yixixyi kkk = to 
describe wiggler field. In the design phase magnet field 
solvers calculate the wiggler fields. Given a calculation of 
the field at a set of points (x,y,z), the problem becomes 
how to find a set of coefficients to reconstruct the field 
using Halbach equations. This is a standard problem in 
non-linear optimisation, which can be solved by existing 
mathematical computer tools. Field calculation results and 
Halbach fit curves of 

yB  as a function of x and z are 
shown in Figure 1. Because of symmetry, only odd 
harmonics are used for the fit. The RMS difference 
between calculation and fit result is 0.16%. The main 
parameters of the damping wigglers are listed in Table 1. 
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Figure 1: Wiggler field model.

From Halbach equations, a vector potential can be 
derived to describe this static magnetic field according to 
Maxwell equation BA =∇ . Because there exists one 
freedom of gauge transformation, one vector potential 
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component can be chosen arbitrarily. For convenience 
here Az is chosen as zero. Then the Hamiltonian of 
charged particle motion in such a field can be written as 
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Table 1: Damping wiggler field parameters 

i iB (Tesla) 2
xyik  

1 1.415 0.028 
3 0.209 -0.023 
5 -0.075 0.011 
7 -0.035 0.002 
9 0.002 0.017 

 

LINEAR DYNAMICS WITH WIGGLER 
In the PETRA III ring, the linear focus, especially in 

the vertical plane, caused by damping wigglers cannot be 
ignored. Unlike in other straight elements, there exists 
non-zero orbit displacement inside the wiggler. It is not 
very convenient to use this orbit as reference orbit, 
because it has variable bending radius, and the magnet 
field becomes complicated in such coordinates.  

A new expanded transformation matrix method has 
been developed to solve the linear dynamics for wigglers 
in Cartesian coordinates. Usually a 6-dimension vector 
XT=(x,x�,y,y�,l,δ) is adopted to describe the particle state 
in phase space, thus a 6×6 matrix is correspondingly used 
to describe the transformation of particle in phase space 
through magnet elements. We form a 7-dimensional state 
vector XT=(x,x�,y,y�,l,δ,1) by adding to X a 7th component 
which is always given by unity. We expand the 
Hamiltonian to second order after substituting the vector 
potential into the Hamiltonian. The linear term of X in the 
Hamiltonian describes bending and orbit displacement in 
the horizontal plane. Consider a given integration step 
size from z to z+dz, dz is so short that Hamiltonian inside 
it can be regarded to be independent of z. Using above 
Hamiltonian, a 7×7 transformation matrix for one step can 
be obtained. 

After concatenating all those matrices piece by piece 
along one period, the transformation matrix of a complete 
period is obtained. Because one wiggler period is 
achromatic, and introduces no orbit displacement, the 7×7 
transformation matrix degenerates into a 6×6 one, which 
can be inserted into an accelerator design program, e.g. 
MAD for linear lattice calculation. 

The validity of the above method has also been 
verified by particle tracking. Tracking a particle with 
small initial amplitude through the ring including 
damping wigglers for certain turns, the non-integer part of 
the tunes is calculated through spectrum analysis, and 
agrees with the linear method. 

SYMPLECTIC TRACKING METHOD 
FOR WIGGLER 

Tracking particle through the derived field maps can be 
done in various ways. The direct method is solving the 
equations of motion with a Runge-Kutta type integration 
(RK). This method is rather slow and not symplectic, but 
can be used to verify any other method. The second 
method is fitting the field map to a set of Halbach 
equations, which in turn allows symplectic integration 
(SI) [4] of the Hamiltonian or integration by other 
methods. Anyway, the above methods require splitting 
each wiggler period into many pieces. Thus they are 
relatively slow and time consuming, especially for a ring 
including long wigglers and undulators, like PETRA III. 

In our design, a generating function (GF)[5] in the form 
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f represent the initial and final state of particle passing 
through wiggler, is built from either form of integration in 
advance (RK and SI). To build this Taylor map 
generating function is also time consuming, because 
numerous particles with different initial states have to be 
tracked to fit the coefficients, but all those calculation are 
needed only once. The transformation through the 
generating function is symplectic, which in turn can 
simplectify the non-symplectic integration, e.g. Runge-
Kutta integration. Because the most important 
components are quadrupole-like and octupole-like 
multipole, the generating function is truncated into a 4th 
order power series. Figure 2 gives xp and yp at the end of 
the damping wiggler as a function of x at the start using 
the three different tracking methods. Figure 2 shows 
excellent agreement between RK and SI; the difference of 
yp between GF and them (RK and SI) is less than 10-3 

mrad. The GF is chosen for later tracking simulation 
because of its speed and symplecticity. 
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Figure 2: Comparison of different tracking methods.

DYNAMIC APERTURE 
For PETRA III, the injected emittance is of the order of 

350 nmrad. To reach safely an injection efficiency of 
close to 100%, an acceptance of 30 mmmrad in the 
horizontal plane is needed. The required aperture in the 
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vertical plane should be larger than 2.2 mmmrad, which is 
limited by the undulator geometric gaps. 

The chromaticity correction in PETRA is done with 
sextupoles, which are located adjacent to the FODO cell 
quadrupoles [1,2]. Compensation of the chromaticity 
contribution of the 9 DBA cells within these cells would 
require large sextupole strengths. The reason is a DBA 
bending magnet deflection of only °5.2  together with the 
dispersion section length of 7.6 m, which leads to small 
dispersion values for all possible sextupole locations. 
Therefore the chromaticity of the complete ring is 
corrected only in the seven FODO octants. 

The damping wigglers are arranged inside FODO long 
straight section, eight 5 m long undulators and one 20 m 
long undulator are available in the DBA octant. In order 
to minimize the non-linear effects caused by the insertion 
devices, the βy functions at those places are designed 
relatively small, for the reason that the octupole-like 
component is much larger in the vertical than in the 
horizontal plane. Figure 3 gives the lattice functions of 
one 3-cell FODO structure, inside which six damping 
wigglers are inserted. The linear lattice function 
calculations and matching include the contribution from 
wigglers and undulators. The dashed line sections in the 
beam lines represent damping wigglers or undulators. 

 

 
Figure 3: FODO section with 6 damping wigglers.

 
The dynamic aperture of the lattice without wigglers 

and undulators has been calculated with the tracking code 
SIXTRACK [6], which allows for full 6-dimensional 
particle tracking without radiation damping. To simulate 
the influence of damping wigglers and undulators on the 
dynamic aperture, each insertion device is described by 
their corresponding 4th order Taylor series generating 
function, which has been obtained in advance.  Figure 5 
gives an example of the results, in which particles are 
stable over 2048 turns, which is approximately equal 1/4 
damping time in the case without damping wigglers, and 
1 damping time with damping wigglers.  

Simulation results show that the non-linear effects 
caused by undulators are also very serious, because their 
short period length leads to large field gradients. 
Designing a so-called TME lattice for the 20 m undulator, 

where the βy function is as small as possible, has 
minimized this effect. Figure 4 gives the lattice functions 
of a 2-cell TME structure, inside which now two 10 m 
undulators are inserted. 

The dynamic aperture decreases by 50% in the 
existence of all insertion devices, but it still is large 
enough for injection (see figure 5). 

 

 
Figure 4: TME section with 2×10m undulators.
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Figure 5: Comparison of dynamic aperture with and 

without damping wigglers and undulators.
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