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Abstract

During the first year after the luminosity upgrade
HERA–e was operated in a mode for which the accessi-
ble area in transverse tune space was determined by res-
onances driven by sextupoles in 2-nd order. It turned out
that with typical total incoherent beam–beam tune shifts
(0.05, 0.08) for 2 IPs this space was too small for stable
operation. We have used 2-nd order Canonical Perturba-
tion Theory (CPT) to analyze the impact of the increased
sextupole strengths in the upgraded lattice on the relevant
resonance strengths and the detuning. Moreover, we have
studied whether it is possible to compensate the resonances
with localized octupole schemes (6 independent magnets in
one straight section) to 1-st and 2-nd order, computed the
resulting detuning and compared the result with 6D track-
ing.

CHROMATIC SEXTUPOLES IN HERA–E
AFTER THE LUMINOSITY UPGRADE

To achieve the horizontal equilibrium emittance of 22nm
which is necessary to meet the specifications of the lu-
minosity upgrade [1], the phase advance in the arcs had
to be increased from 60◦ to 72◦ per FODO cell. Thus
stronger excitation of the chromatic sextupoles was needed
to compensate the increased natural chromaticities. For
the 72◦ optics a sextupole scheme [2] with two indepen-
dent families per plane was chosen to minimize the impact
of the direct sextupole resonances (3Qx and Qx + 2Qy)
and the off–momentum dynamic aperture in the absence
of collisions. However, under collisions with 100mA pro-
tons of εnorm,1σ

p,x = εnorm,1σ
p,y = 5π mm mrad and with

positron beta–functions at both IPs of βe,x = 0.63m and
βe,y = 0.26m the total incoherent beam–beam parameters
are ξe,x = .046 and ξe,y = .074. Fig. 1 shows the positron
tune necktie caused by the beam–beam tune spread for
the nominal fractional luminosity tunes [Qx] = .236 and
[Qy] = .319 (referring to non–colliding bunches) of the
run year 2002. The following non–skew sum–resonances
of 4-th order cross or bound the populated tune space : 4Q x

(limits the non–coll. tune to the right), 2Qx +2Qy (crosses
the necktie) and 4Qy (limits the central tune of the colliding
bunches from below). As a matter of fact even with mod-
erate proton currents of 60–80mA operational conditions
where quite uncomfortable. Tiny deviations of the positron
tunes away from their optima immediately degraded the lu-
minosity and the positron lifetime. Since the relevant 4-th
order resonances are most strongly driven by the chromatic
sextupoles in 2-nd order CPT, we used a code[3] based on
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Figure 1: The tune necktie for the working point of 2002 with
collisions with a 100mA proton beam

2-nd order CPT to compute their strengths in the old and
new optics and analyzed potential cures.

CANONICAL PERTURBATION THEORY

We start from the transverse Hamiltonian
H(x, x′, y, y′; θ) = H0(x, x′, y, y′; θ) + H1(x, y; θ)
where H0 represents the linear, unperturbed and un-
coupled motion and H1 =

∑
n,m<1 an,m(θ)xnym

represents the perturbation due to distributed multipoles.
By applying the symplectic transformation generated
by x(Ψx, Jx, θ) =

√
2Jxβx(θ) cos(Ψx + Φx(θ))

y(Ψy, Jy, θ) =
√

2Jyβy(θ) cos(Ψy + Φy(θ)) we trans-

form the unperturbed Hamiltonian H0(�Ψ, �J ; θ) = 0, i.e.
the new variables �J , �Ψ are both slow for small perturbation
H1. Here the Φi(θ) = Qiθ + ψi(θ) are the betatron phase
advances with ψi(θ+ 2π) = ψi(θ). Introducing the abbre-
viations �α := (n,m; ν, µ) and Q�α,k := ν Qx + µQy + k,
and performing a Fourier transform w.r.t. θ we obtain

H1(�Ψ, �J, θ)=
∑

�α,k

h�α,k J
n
2

x J
m
2

y ei(νΨx+µΨy)+Q�α,kθ (1)

where
h�α;k :=

1
2π

∫ +π

−π

dθ H�α(θ) e−ikθ (2)

H�α(θ) :=
(

n
n−ν

2

)(
m

m−µ
2

)

an,m(θ)

×
(
βx(θ)

2

)n
2
(
βy(θ)

2

)m
2

ei(νφx(θ)+µφy(θ)−kθ) .(3)

The key idea of CPT is to apply a symplectic near–identity
transformation (�Ψ, �J → �Ξ, �I) to eliminate as many as pos-
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sible �Ψ and θ dependent terms, thereby approximating the
orignal system by an integrable one. Such a transforma-
tion can be found (to all orders CPT) if a) the perturbation
is sufficiently small and b) the tunes Qx and Qy fulfill a
set of diophantine conditions, i.e. if mink∈Z Q�α,k is non–
zero and decays sufficiently slow with the resonance–order
|ν|+ |µ|. Here we are interested in the opposite case where
there are some resonant �αr so that ∃k ∈ Z withQ�αr ,k ≈ 0.
Note that a) if �αr = (n,m, νr, µr) is resonant then so is
(n,m, jνr, jµr) with j ∈ Z and b) all the detuning terms
(with ν = µ = 0) are “resonant” in the sense that they
cannot be eliminated, however they do not destroy integra-
bility. Some tedious algebra shows [4] that the resonant
normal form to 2-nd order is given by the Hamiltonian

K(�Ξ, �I, θ) =
∑

�αr,kr

(

h�αr ,kr
+
g
(x)
�αr,kr

Ix
+
g
(y)
�αr,kr

Iy

)

× I
nr
2

x I
mr
2

y ei(νrΞx+µrΞy+Q�αr,kr θ) , (4)

where the 1-st order driving terms h�αr ,kr
are the resonant

terms from (1) and the g (x)
�αr ,kr

and g(y)
�αr ,kr

are the 2-nd order
driving terms given by

g
(x)
�αr,kr

= −
∑

�α′+�α′′=�α

(n′′ + 2)ν′

8π2

∫ +π

−π

dθ

∫ +π

−π

dθ′

× H�α′′(θ)H�α′ (θ′)f�α′(θ), (5)

where f�α′(θ) is a known function of θ which depends on

whether �α′ is resonant or not, and the g (y)
�αr,kr

are computed
analogously except for (n′′+2)ν′ → (m′′+2)µ′. Note that
(5) implies that sextupoles with 1-st order driving terms of
resonance–order 3, generate 2-nd order driving terms up to
resonance–order 6.

RESONANCE WIDTHS

We now assume that the system is close to a reso-
nance νQx + µQy + k ≈ 0 and that all but one driv-
ing terms for that resonance vanish. Then the system is
well approximated by the single resonance Hamiltonian

K�α,k(�Ξ, �I; θ) = r�α,kI
n∗
2

x I
m∗
2

y ei(νΞx+µΞy+Q�α,kθ , where
r := h, g(x) or g(y) and n∗ := n, if r = h, g(y) or
n∗ := n− 2 if r = g(x) plus the analogous for m∗ if r = h
or g(x). Now we introduce R := |r| and χ := arg(r) and
make the system autonomous by a canonical transforma-
tion that winds back the slow rotation through Q �α,k. The
new Hamiltonian (re-using H, �Ψ and �J) is given by

H�α,k(�Ψ, �J) = �∆�α,k · �J
+ R�α,kJ

n∗
2

x J
m∗
2

y cos(νΨx+µΨy+χ�α,k),(6)

where �∆�α,k is constrained by Q�α,k − ν∆�α,k
x − µ∆�α,k

y =
0. In passing we note that H �α,k and µJx − νJy and are
integrals of motion. The (sum-) resonance width on a torus
described by �J is defined as the ‖�∆�α,k‖ for whichH �α,k has

fixed points ∂�ΨH = ∂�JH = 0 at �J . The reason is simply
that these fixed points determine the approximate distance
from �J = 0 outside which the motion becomes potentially
unstable for a sum resonance. In the case of several non
vanishing R�α,k with different n,m for the same ν, µ, k we
approximate the width by the absolute value of the vector
sum of the �∆�α,k’s. Tab. 1 summarizes the results of the

Table 1: Ratio of resonance widths of e+-optics helumgj (2002)
and helumsm (2003) w.r.t. helumiv7 (pre–upgrade) computed
with CANO

νQx + µQy (yr.02)/(pre) (yr.03)/(pre)

4Qx + 0Qy 3.07 2.24
2Qx + 2Qy 1.20 0.72
0Qx + 4Qy 2.85 18.35

calculation for the luminosity optics of 2002 (helumgj),
2003 (helumsm) compared to the last (pre–upgrade) optics
from 2000 (helumiv7). The resonances 4Qx and 4Qx are
strongly enhanced and thus limit the available tune space,
while 2Qx + 2Qy, which crosses the beam–beam footprint
in fig. 1, is only marginally affected. Note that before the
upgrade (and in fact after mid 2003) collisions in HERA
were established at positron tunes far away from the 4-th
order resonances.

OCTUPOLE CORRECTION

Since in 2002 it was not completely clear whether op-
erating HERA–e at tunes in a save distance from the 4-th
order resonances could be achieved [5], it was decided to
look into possible schemes for weakening the strengths of
the resonances 4Qx, 2Qx + 2Qy and 4Qy. The only tech-
nically feasible scheme seemed to place a small number of
octupoles, which drive the 4-th order resonances already at
1-st order CPT, in some suitable places in the West straight
section, i.e. to compensate accumulated effects of the dis-
tributed chromatic sextupoles globally with localized oc-
tupoles.

Sextupoles contribute the independent 1-st order driv-
ing terms h3,0;3,0, h3,0;1,0, h1,2;1,2, h1,2;1,0 and h1,2;1,−2.
Eq. (5) tells us which 2-nd order driving terms for 4-th
order resonances they generate. However, (4) shows that
some of them come with powers of �J that are not the same
as the corresponding 1-st order octupole terms. Therefore
not all driving terms can be canceled globally throughout
phase space. Tab. 2 lists these terms. Our strategy was

Table 2: 2-nd order driving terms due to sextupoles and 1-st or-
der term due to octupoles. The sextupole terms are divided in
terms with powers of the Ji being incompatible and compatible
for global cancellation by octupoles. The index k is suppressed.

ν, µ 2-nd order sxt 1-st ord. oct
incompat. compat.

4,0 g
(x)
4,2;4,0 g

(x)
6,0;4,0 h4,0;4,0

2,2 g
(x)
2,4;2,2 g

(y)
2,4;0,4, g(x)

4,2;2,2 h2,2;2,2

0,4 g
(y)
2,4;0,4 g

(x)
2,4;0,4 h0,4;0,4
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to completely cancel the sextupole terms that have a �J–
dependence that is compatible with octupoles and leave the
other terms unchanged. To minimize the real and imagi-
nary parts of 3 resonances at least 6 octupoles, located at
positions with suitable beta–functions and betatron phase
advances, are needed. Once such locations are found, solv-
ing a linear system of minimization constraints leads to the
required integrated octupole strengths. Note that octupole
strengths for our example turned out to be rather large. The
result of comparing the resonance widths with and with-
out octupoles in 2-nd order CPT is summarized in tab. 3.
Instead of reducing the resonance widths, the octupoles in-
creased them up to a factor of 2. The reason is fairly sim-

Table 3: Ratio of resonance width of e+-optics helumsm (2003)
with chromatic sextupoles and octupole correction (SO) and oc-
tupole correction only (nO) w.r.t. chromatic sextupoles only (Sn)
computed with CANO

νQx + µQy nO/Sn SO/Sn

4Qx + 0Qy 0.95 1.93
2Qx + 2Qy 0.14 1.14
0Qx + 4Qy 0.10 1.10

ple: Already the number of 2-nd order driving terms intro-
duced through octupoles and cross terms of sextupoles with
octupoles is typically a factor of two bigger than with the
chromatic sextupoles only. Tab. 4 compares these numbers

Table 4: Number of 2-nd order driving terms for sextupoles only
(Sn), octupoles only (nO) and both (SO).

4Qx 2Qx + 2Qy 4Qy

Sn 2 3 2
nO 4 4 3
SO 7 7 6

explicitly.
Another problem of the 6-octupole scheme is the

strongly increased detuning. The detuning part of the 2-nd
order normal form Hamiltonian is at most quadratic in the
actions for sextupoles only while it contains cubic terms
when octupoles are introduced. Fig. 2 shows the vertical
detuning ∆Qy vs. the orbital amplitudes. Obviously the
main contribution comes from the octupoles (green). The
sextupole contribution (red) is smaller and mostly oppo-
site in sign, thus softening the total detuning (blue) slightly.
We note that in principle it is possible to completely can-
cel all detuning due to octupoles once 3 more independent
octupoles at suitable beta–functions and phases are intro-
duced.

Finally the 6-octupole scheme was analyzed using a ver-
sion of SIXTRACK. In a double loop particles with varying
horizontal and vertical amplitudes and a fixed initial mo-
mentum deviation where tracked through the full 6D lat-
tice with (black x-es) and without (red crosses) octupoles
for 1024 turns. Fig. 3 shows the survival plot for both en-
sembles. The chosen 6–octupole scheme reduced the short
term dynamic aperture by a factor 4–5.

The conclusion is that analytical methods (2-nd order
CPT) and 6D symplectic tracking agree that compensating

helumsm : ∆ Qy
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Figure 2: The vertical amplitude dependent tune shift in 2-nd
order CPT due to chromatic sextupoles, the correcting octupoles
and the combination of both.
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Figure 3: Survival plot for 6D tracking with SIXTRACK

the effect of strong and distributed chromatic sextupoles by
a localized group of the minimal number of octupoles is
difficult if not impossible in HERA–e. However, the prob-
lem was solved [5] by moving the working point away from
the 4-th order resonances.
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