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Abstract 
In this paper we estimate long- and short-range wake 

functions for new elements to be used in TESLA Test 
Facility (TTF) - II. The wake potentials of the LOLA-IV 
structure and the 3rd harmonic section are calculated 
numerically for very short bunches and analytical 
approximations for wake functions in short and long 
ranges are obtained by fitting procedures based on 
analytical estimations. The numerical results are obtained 
with code ECHO [1] for high relativistic Gaussian 
bunches with RMS deviation up to 0.015 mm. The 
calculations are carried out for the complete structures 
(including bellows, rounding of the irises and the different 
end cell geometries) supplied with ingoing and outgoing 
pipes. The low frequency spectra of the wake potentials is 
calculated using the Prony-Pisarenko method. 

LONGITUDINAL WAKE FUNCTION OF 
LOLA-IV STRUCTURE 

The LOLA-IV transverse deflecting cavity has to be 
used as a diagnostic for measuring the length of very 
short bunches in  the TTF-II.  

The LOLA structure consists of 104 cells. The gap g  

for the middle cells is equal to 29.1338 mm and for the 
end cells -  to 29.0957 mm. The irises with radius 

22.4409a mm=  are rounded and have the thickness 

5.842 mm. The initial part of the geometry is shown in 
Fig 1. The total length of the structure is equal to 3.6m∼ . 
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Fig 1. The geometry of the LOLA structure. 
 
The calculated longitudinal wake potentials (solid lines) 

together with analytical approximations (2) (dashed lines) 
are shown in Fig. 2. 

The LOLA cavity can be treated as a periodic structure 
of finite length. As shown in Ref. [2] the high frequency 
behavior of impedance is complicated. The high 
frequency dependence of impedance for an infinite 
periodic structure is 3/ 2ω −  that differs essentially from 

finite structure 1/ 2ω −  behavior. As the LOLA structure 
has a finite length there is a transition region where the 
frequency behavior of impedance changes from 3/ 2ω −  to 

1/ 2ω − . The above argument explains  the complicated 
oscillated behavior of the wake potentials for the shortest 
bunches (see Fig.2). To describe the oscillations, the one 
cell solution [3] is modified by a cosine factor preserving 
the original asymptotic behavior. 
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Fig 2. Comparison of numerical (solid lines) and  
“analytical” (dashed lines) longitudinal wake potentials in 
the LOLA structure for Gaussian bunches 
with 25,50,100,250,500,1000 mσ µ= . 

  
To find an analytical approximation of the wake 

function a fitting process was used. As an analytical 
model we used a combination of the modified one cell 
and periodic structure solutions: 
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The first term in equation (1) describes a periodic 
(1), 0,O s →  behavior and as shown in Ref. [2,3] the 

coefficient can be estimated as 
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The second term in equation (1) should describe a finite 
structure 0.5( ), 0,O s s− →  behavior as well as oscillations 

seen in Fig. 2. As shown in Ref. [4] the coefficient B can 

be estimated as    ( ) 1
2 12
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−

= = ⋅ . 

Fitting the wake function in form (1) to the numerical 
wake potentials shown in Fig.2 the following analytical 
expression is obtained (in [V/pC]) 
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The numerical coefficients in the equation are consistent 
with above analytical approximations.  
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Fig. 3 shows wake function (5) together with numerical 
wake potentials (solid gray lines) outlined earlier in Fig.2. 
We see that the wake function tends to be an envelope 
function to the wakes. 

 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-300

-250

-200

-150

-100

-50

0
0

||

/

W

V pC

/s cm
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-300

-250

-200

-150

-100

-50

0
0

||

/

W

V pC

/s cm  
Fig 3. The “analytical” longitudinal wake function 
(dashed line) for the LOLA and numerical (solid lines) 
wake potentials for bunches with 25 1000 mσ µ= − . 

 
As the next check the above results can be compared to 

the analytical estimations given in Ref. [5], p.243. The 
impedance of structure consisting of N  pillboxes at the 
high frequency limit can be estimated by an expression 
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Fig 4. Comparison of numerical (solid line) and  
“analytical” (dashed line) longitudinal wake potentials for 
one cell (left) and ten cells (right) of the LOLA structure. 
 

Fig. 4 shows comparison of the numerical and analytical 
(3) wake potentials in one and ten middle cells of the 
LOLA cavity for a bunch with 100 mσ µ= . Equation (3) 

is obtained in Ref. [5] for square irises. To take into 
account weakening of the wake fields due to rounding of 
irises an effective iris radius 1.13a a=  is used in 
calculations and coincidence of the numerical and 
analytical curves can be seen in Fig. 4. 

For the complete 104 cells LOLA structure the results 
are shown in Fig.5 for bunches with 100 mσ µ= (left) and 

25 mσ µ= (right). We see that equation (3) is not able to 

describe transient behavior presented by cosine term in 
Eq.(1). 
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Fig 5. Comparison of numerical (solid line) and  

“analytical” (dashed line) longitudinal wake potentials for 
100 mσ µ=  (left) and 25 mσ µ= (right) in the LOLA. 

 
To estimate long range wake fields the wake potential 

for Gaussian bunch with 1mmσ =  is calculated for 
distance up to 2 meter after the bunch.  

The longitudinal wake function can be approximated by 
expression (in [V/pC]) 
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 To obtain an approximation of the long-range wake 
function we keep in Eq. (4) only a finite number of 
addends corresponding to the lowest frequencies. 
 
Table 1. The lowest frequencies and their amplitudes for 
long-range longitudinal wake function of  the LOLA 
structure. 
 

if , 

GHz  

2.11 5.09 5.57 6.93 7.62 10.5 11 11.7 

iK , 
1210  

34.6 3.26 5.76 4.7 6.4 1.3 2.6 2.8 

 
The values are obtained using the Prony-Pisarenko 

algorithm [7]  and are given in Table 1.  

TRANSVERSE WAKE FUNCTION OF 
LOLA-IV STRUCTURE 

In this section we repeat the exercise for transverse 
case. The calculated transverse wake potentials (solid 
lines) together with analytical approximations (dashed 
lines) are shown in Fig. 6. 

To find an analytical approximation of the wake 
function a fitting process was used. As an analytical 
model we used a combination of the one cell and periodic 
structure solutions: 
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. (5) 

The first term in equation (5) describes a periodic 
( ), 0,O s s →  behavior. The expression  for estimation of 
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the coefficients, suggested in  Ref. [6],  results in 
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3 120
1 1 11.17 4

4
0.169 2.4 10 , 4951 10 .total

Z ca g
s As s L

L aπ
−= = ⋅ = = ⋅  

The second term in equation (5) should describe a finite 
structure 0.5( ), 0,O s s →  behavior. As shown in Ref. [4] 

the coefficient B can be estimated as 
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Fig 6. Comparison of numerical (solid lines) and 
“analytical” (dashed lines) transverse wake potentials for 
the LOLA structure. 

 
Fitting the wake function in form (5) to the numerical 

wake potentials shown in Fig.6  the following analytical 
expression is obtained (in [V/pC/m]) 
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The numerical coefficients in the equation are consistent 
at least in order with analytical approximations.  

The long range transverse wake function is given in 
Ref.[8]. 

WAKE FUNCTIONS OF THE 3RD 
HARMONIC SECTION 
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Fig 7. The part of the geometry of the 3rd  harmonic 
section. Only one cavity is shown. The whole structure 
includes 4 cavities and 3 bellows. 

 
For the phase 2 of the TESLA test facility (TTF 2) it 

has been planed to use a cavity section operated at three 
times the 1.3 GHz frequency of the existing TTF1 cavities 
to compensate nonlinear distortions of the longitudinal 

phase space. The 3rd harmonic section consists of 4 
TESLA-like (but reduced by factor 3) cavities with 13-
fold bellows in between. The iris radius is 15a mm= . 

The cavities are connected with pipes of the radius 
20pa mm= . On both ends of the section there are step 

transitions from pa  to 39b mm=  as shown in Fig 7. 

Fitting analytical wake function models [10] to the 
numerical wake potentials the analytical expression are  
obtained (in [V/pC] and [V/pC/m], correspondingly) 
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The analytical models, estimation of the coefficients 
and long-range wake functions of the  3rd  harmonic 
section are described in details in Ref. [8]. 
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