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Abstract 

The joint effect of space-charge nonlinearities and 
octupole lenses is discussed for the case of a quasi-
parabolic distribution function in the two transverse 
planes, considering a monochromatic beam and neglecting 
the longitudinal variation of the transverse space-charge 
forces. The self-consistent nonlinear space-charge tune 
shift corresponding to the above distribution function is 
first derived analytically. Noting that a reasonable 
approximation of the space-charge tune shift is given 
considering only linear terms in the betatron action 
variables, the dispersion relation is solved analytically in 
this approximate case. As expected, in the absence of 
external (octupolar) nonlinearities, the result of Möhl and 
Schönauer is recovered: there is no stability region. In the 
absence of space charge, the stability diagrams of Berg 
and Ruggiero are recovered. The new result is applied to 
the LHC at injection. 

INTRODUCTION 

The influence of space-charge nonlinearities on the 
Landau damping mechanism of transverse coherent 
instabilities has been studied thirty years ago by Möhl and 
Schönauer for coasting and rigid bunched beams [1]. 
Later Möhl extended these results to head-tail modes in 
bunched beams [2]. The basic results of these studies are 
that in the absence of external (octupolar) nonlinearities, 
the space-charge nonlinearities have no effect on bean 
stability, as the incoherent space-charge tune spread 
moves with the beam. When octupoles are added, the 
incoherent space-charge tune spread is “mixed-in”, and in 
this case the octupole strength required for stabilization 
can depend strongly on the sign of the excitation current 
of the nonlinear lenses. 

In a workshop in 1999 [3], the community was not 
entirely comfortable with the interpretation by Möhl and 
Schönauer and recommended further theoretical studies 
and controlled measurements. 

The dispersion relation found and solved in this paper 
is discussed in the first section. It is the same as the one of 
Refs. [1,2], solved here for the quasi-parabolic 
distribution 22 ])5(/)(1[),( σyxyx JJJJf +−∝ . This 
distribution function leads to a physical beam profile, 
which is a bell-shaped curve smoothly going to zero, 
  

together with its first and second derivative, at ~±3.2σ . 
The self-consistent space-charge tune shift is given in the 
second section. The exact dispersion relation has been 
expressed in Ref. [4], and remains to be solved. In the 
third section, the dispersion relation is solved analytically 
for the approximate space-charge tune shift, where only 
the linear terms are retained. This seems to be a 
reasonable approximation as discussed in Ref. [4]. The 
new result is applied to the LHC at injection in the fourth 
section. 

DISPERSION RELATION 

Considering the case of a quasi-parabolic distribution 
function having the same normalized rms beam size 

εσ =  in both transverse planes and taking into account 
both octupoles and nonlinear space-charge forces, the 
Landau damping mechanism of coherent instabilities, e.g. 
in the horizontal plane, is discussed from the following 
dispersion relation [1,5] 
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Here, cQ  is the coherent betatron tune to be determined, 

yxJ ,  the betatron action variables in the horizontal and 
vertical plane respectively, x

cohQ∆  and x
incohQ∆  the 

horizontal coherent and incoherent tune shifts, m the head-
tail mode number, sQ  the small-amplitude synchrotron 
tune (the longitudinal spread is neglected), and 

),(0 yxx JJQ  the horizontal tune in the presence of 
octupoles but in the absence of space-charge, given by [6] 
 
 ( ) ., 000 yxxyxx JbJaQJJQ ++=  (4) 
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To be consistent, the space-charge tune shift has to be 
computed for the assumed quasi-parabolic distribution 
function of Eq. (2), which is done in the next section. 

NONLINEAR INCOHERENT SPACE-CHARGE 
TUNE SHIFT 

Poisson’s equation can be integrated explicitly for the 
special case of ellipsoidal symmetry [7]. This leads to the 
expression of the Lorentz force experienced by the 
particle located at the position ),( yx  inside the bunch. 
For an approximate solution, the nonlinear x - and y -
dependence of the force is converted into an amplitude 
dependence of the particle’s tune using the method of the 
harmonic balance, which is an averaging process over the 
incoherent betatron motions. The self-consistent nonlinear 
space-charge tune shift is finally given by [4] 
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with 
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5 20 norm
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B

rN

εγβπ
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where, max/ JJj xx = , max/ JJj yy = , bN  is the number of 
protons in the bunch, pr  the classical proton radius, B  
the bunching factor, β  and γ  the relativistic velocity 
and mass factors, and εγβε =norm

rms  the transverse rms 
normalized emittance. 

SOLUTION OF THE DISPERSION RELATION 

Knowing the expression of the nonlinear space-charge 
tune shift, the dispersion relation of Eq. (1) can then be 
expressed [4]. This equation has not been solved yet. As 
discussed in Ref. [4], a reasonable approximation of the 
space-charge tune shift is given by taking into account 
only the linear terms in the betatron action variables yxJ ,  
(adapting the coefficients!). In this case, it is written 

 

 ( ) ., 0 ybxayx
x
incoh JJJJQ ∆+∆+∆=∆  (7) 

The dispersion relation can then be solved analytically and 
is expressed as 
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where 111 / abc = , aaa ∆+=1 , bbb ∆+=1 , 

max11 JaS −=  and ( ) 1000 / SQmQQq sxc ∆−−−= . 

APPLICATION TO THE LHC AT INJECTION 

The case of the LHC at injection is considered. Given 
the nominal beam emittance at 450 GeV/c nm8.7=ε , 
and the maximum permitted octupole spread (compatible 
with an adequate dynamic aperture), the corresponding 
values of the anharmonicities are 7164±≈a  and 

4647�≈b . Making the numerical computation for the 
nominal LHC beam parameters gives 3

0 101.1 −×−≈∆ , 
18127≈∆ a  and 12948=∆b  [4]. 

Four stability diagrams are represented and compared 
in Fig. 1 with the nominal LHC beam parameters and 
maximum permitted octupolar strength: 0>a  
corresponds to the case with octupoles only and positive 
horizontal detuning, 0<a  corresponds to the case with 
octupoles only and negative horizontal detuning, 

SC0 +>a  corresponds to the case with both space-
charge and positive horizontal detuning for the octupoles, 

SC0 +<a  corresponds to the case with both space-
charge and negative horizontal detuning for the octupoles. 
If x

cohQ∆  (complex coherent tune shift in the absence of 
tune spread) lies on the inside of the stability diagram, the 
beam is stable. If it lies on the outside, the beam is 
unstable. Without frequency spread, the condition for the 
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beam to be stable is thus simply 0)(Im ≥∆ x
cohQ  

(oscillations of the form tje ω  are considered).  
The evolution of theses four stability diagrams with 

decreasing space-charge and octuplar strength is shown in 
Figs. 2 and 3 respectively. It is seen that when space-
charge (i.e. intensity) decreases, the stability diagrams 
converge to the ones found by Berg and Ruggiero without 
space charge [8]. When the octupolar strength is reduced, 
the stability diagrams converge to each other and to zero, 
as predicted by Möhl and Schönauer [1]. 

 

 

 

 

 

 

 

 

 
 

Figure 1: Stability diagrams for the nominal LHC beam 
parameters at injection with maximum octupolar strength. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Evolution of the stability diagrams with 
decreasing space-charge (intensity): (upper) 4/bN  and 
(lower) 100/bN . 

CONCLUSION 

The self-consistent nonlinear space-charge tune shift 
corresponding to the quasi-parabolic distribution function  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Evolution of the stability diagrams with 
decreasing octupolar strength: (upper) 4/1  of the 
maximum strength and (lower) 50/1 . Note the change of 
vertical scale for the second plot. 

22 ])5(/)(1[),( σyxyx JJJJf +−∝  has been derived 
analytically. A reasonable approximation of it is provided 
by the linear terms in the betatron action variables. The 
dispersion relation has been solved analytically in this 
case. 

The approximate tune shift should give a reasonable 
picture for beams with rectangular longitudinal profiles, 
“slightly” underestimating the effect of the large-
amplitude particles, which should reflect on the shape of 
the stability diagram but neither on the height nor on the 
width. 

For the usual case of parabolic or Gaussian bunches, 
the last missing important ingredient in this theory is the 
longitudinal variation of the transverse space-charge 
forces, which should increase the stability region on the 
right-hand side. 
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