
PARTICLE-IN-CELL BASED BEAM DYNAMICS SIMULATIONS

T. Lau, E. Gjonaj and T. Weiland,
Institut für Theorie Elektromagnetischer Felder Technische Universität Darmstadt

Schloßgartenstraße 8, D-64289 Darmstadt, Germany

Abstract

Several methods for the suppression of spurious noise in
the field solution, typically emerging in long-time Particle-
In-Cell (PIC) simulations, are investigated. The results
are compared with the analytical solution for a bunch in
a semi-infinite waveguide. As a realistic example simula-
tions for the RF-Gun installed at Photo Injector Test Facil-
ity in DESY Zeuthen (PITZ) are presented.

INTRODUCTION

In modern accelerator structures the dimensions of a
bunch are typically much smaller than those of the geome-
try. This requires from an efficient numerical method to use
a minimal number of grid points to achieve a given accu-
racy. Especially, for traditional numerical schemes the sim-
ulation of ultra-relativistic electron bunches is problematic.
Time growing spurious oscillations, in the numerical field
solution can totally mask the physical field. Theoretically,
this oscillations can be reduced by increasing the number
of grid points. Unfortunately, for most practical calculation
this is not feasible, because of memory limitations. Thus,
it is necessary to find efficient algorithms which eliminate
this oscillations, while still retaining an accurate field solu-
tion.

FINITE INTEGRATION TECHNIQUE

The numerical method considered in this paper, for the
solution of the Maxwell equations, is the Finite Integration
Technique (FIT) [2]. As starting point, the integral form of
the Maxwell equations on a computational grid G and it’s
associated dual grid G̃ are considered. Within the frame-
work of the FIT method this equations are casted into a set
of matrix equations,
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where two positive definite matrix operators Mε and Mµ

are introduced. Higher order, boundary conformal material
operators resulting in a more accurate approximation of the
fields have been proposed in [6].
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Figure 1: Numerical phase velocity for a wave propagating
along a coordinate axis vs. grid resolution. The physical
phase velocity is scaled to unity.

NOISE REDUCTION

The spacial discretization of the Maxwell equations re-
sults in an ODE system, which in the standard implementa-
tion are evaluated in time using a Leap Frog (LF) scheme,
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which is a second order accurate time stepping method.
Fig. 1 shows the discrete phase velocity and it is seen that
for waves resolved with to few grid points a very large de-
viation from the physical phase velocity occurs. The un-
physical propagation of this unresolved waves leads to the
oscillations described in the introduction. A remedy is to
damp this wavelengths, which can be achieved by applying
dissipative integration schemes. As dissipative algorithm,
the Transversal Current Adjustment (TCA) scheme [3] was
chosen in this work. The algorithm makes a slight modi-
fication of the LF method by adding an artificial damping
term to suppress unresolved, short wavelengths:
(

�

h
(n+1)

�e(n+ 3
2 )

)

= ATCA

(
�

h
(n)

�e(n+ 1
2 )

)

+ ∆t

(

0

M−1
ε

��

j
(n+1)

)

with

ATCA = ALF − α∆t2
(

M−1
µ CM−1

ε C̃ 0
0 0

)

.

Proceedings of EPAC 2004, Lucerne, Switzerland

170



The dissipation parameter, α, is a free parameter and has to
be chosen to an appropriate value. Depending on the value
of the parameter α, the maximal stable time step for the
TCA scheme is reduced in comparison with the LF method.

A different approach is to improve the dispersion prop-
erties for waves propagating along the beam axis. This ap-
proach is based upon the observation, that for the field of
a relativistic bunch in an accelerator structure the shorter
wave lengths propagate in the longitudinal direction rather
than in the transversal ones. This motivates to split the dis-
crete curl operator, acting on the electromagnetic fields, in
the numerical method into a longitudinal and a transversal
part with respect to the bunch motion. The fields are up-
dated according to the flow chart in Fig. 2 in a step by step
manner by considering the transversal and longitudinal part
of the curl operator respectively. A Strang splitting scheme
[5] of the operators is applied to obtain second order accu-
racy in the time integration. The splitting algorithm,
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applies the two-step LF scheme in each sub step. In con-
trast to the one-step LF method, the fields of the two-step
LF method
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are allocated at the same time level. For waves propagat-
ing along the longitudinal direction at a time step equal to
c0∆t = ∆x, the numerical phase velocity of the splitting
scheme is identical to the physical phase velocity. Hence,
this time step is applied in all simulation with the splitting
scheme.

ANALYTICAL BENCHMARK

For a rotational symmetric bunch, propagating with a
constant velocity through a semi-infinite waveguide, the
Green’s function is calculated in [1]. In order to compare
the different numerical schemes, a bunch with a radial hat-
profile in space and a truncated gaussian current distribu-
tion in time is taken. Then the analytical solution is ob-
tained by a convolution of this profile with the greens func-
tion. For all simulations a damping parameter α = 0.02
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Figure 2: Flow chart of a single field update for the pro-
posed splitting scheme.

in the TCA scheme was used. The computational mesh is
held constant, corresponding to a resolution of 7 grid points
within the bunch length.

The simulation is stopped when the distance between the
bunch and the source reaches the longitudinal distance of 9
cm. The simulated longitudinal electrical field on the axis
of the wave guide is plotted in Fig. 3.

The LF scheme shows unphysical oscillations. In com-
parison, the dissipative TCA scheme removes the oscilla-
tions in the vicinity of the bunch. The operator splitting
scheme shows no spurious oscillations and the field in the
vicinity of the bunch is more accurate than the one obtained
by the other methods. If the grid resolution is increased to
14 grid points per bunch length, all schemes converge to
the analytical solution.

SIMULATION OF THE PITZ GUN

As a realistic application for the schemes the PITZ RF-
gun [4] is chosen. In this structure the beam is accelerated
in a 1.5 cell copper cavity operated in the π-mode at 1.3
GHz.

The accelerating RF-field and the static magnetic field
were computed with the computational packages CST
MWS and CST EMS [7]. In the 3D-dimensional PIC sim-
ulations the external fields are added to the space charge
fields. The bunch profile is a homogeneous disc in the ra-
dial direction and a flat-top function in time for the current
distribution. The simulations were stopped at a longitudi-
nal distance of 20 cm from the cathode. The simulation
parameters are given in Tab. 1 and the simulation results
are shown in Fig. 4.

The LF scheme shows large oscillations. In comparison,
the TCA algorithms is able to damp most of the oscilla-
tions, except for those in the vicinity of the bunch. The
operator splitting scheme shows less oscillations than the
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Figure 3: Longitudinal electric field on the axis of the semi-
infinite wave guide for the different schemes.

others, especially in the vicinity of the bunch.

SUMMARY AND CONCLUSIONS

Three time integration schemes based on the conformal
FIT discretization are compared with respect to their ability
to integrate the space charge fields, created by a relativis-
tic bunch, in an accelerator structure. In contrast to the
standard LF scheme, the TCA algorithm and the proposed
splitting scheme are able to reduce the HF noise in the field
solution significantly. This ability is important for the beam
dynamics simulations.
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Table 1: PITZ Simulation Parameters
Beam Parameter Value
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Field at Cathode ECath = −40.0/(MV/m)
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Figure 4: The longitudinal electric field on the axis of the
PITZ RF-gun for the different schemes.
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