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Abstract 
  In this paper we present exact analytical solutions for the 
particle motion in the six-dimensional phase space taking 
into account the space charge forces of linear coupled 
beam. The transfer matrices for the typical elements of 
magnetic lattice, such as drifts, cavities, quadrupole and 
dipole magnets have been obtained. The symplectic 
transfer matrices are used to develop a tracking program 
for the coupled betatron and synchro-betatron motion that 
enables the simulation of the tilted beam effects in 
circular accelerators. 

INTRODUCTION 
 Intense, high-brightness electron beams foresee in third 
generation light sources require minimal emittance and 
lowest particle loss throughout their acceleration and 
transport. The dynamics of such beam is significantly 
affected by strong self forces due to space charge. We are 
interested in study of direct space charge effects on 
electron bunch motion in storage rings, such as detuning 
and excitation of additional resonance lines, change of 
betatronic oscillation amplitudes for the tilted in all three 
coordinate planes electron bunch. In conjunction with 
magnet non-linearities, all these effects may give rise to 
particle diffusion, to large betatron amplitudes and 
eventually to particle loss. For the tilted beam crossing a 
periodic lattice of storage ring the space charge induced 
coupling effects between the beam transverse coordinates 
and synchro-betatron coordinates are studied using 
element-by-element 6D matrix formalism. We present 
also some preliminary numerical results for the CANDLE 
[1] storage ring, based on computer code that uses 
obtained exact analytical solutions for the transfer 
matrices of common elements of magnetic lattice.   

TRAJECTORY EQUATIONS  
For particle motion description we use the Lagrangian 
formalism starting from the Lagrangian of a charged 
particle with the momentum p  and charge e  in 
electromagnetic field  
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where ),,( syx AAA  and φ  are components of 

electromagnetic field vector potential and scalar potential, 
respectively,  the derivations are taken with the respect to 
time variable. 
 From (1) one can derive the equation of particle 
trajectory in the natural coordinate system 

),,( zyx connected with the design orbit in the form: 
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where  tvsz ⋅−= 0  is the longitudinal coordinate that 

defines the particle distance from the bunch centre, 

yx pp , are the normalized to design momentum 

transverse momenta, 
0E

E∆
=δ  is relative energy deviation, 
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 is the trajectory curvature in the 

bending magnets, RFmE ω,  are the accelerating field 

amplitude and frequency in the cavity, respectively, prime 
denotes derivative with the respect to longitudinal 
coordinate s . The last terms in the r.h.s of the second, 
fourth and sixth equations represent self-repulsive forces 
from the bunch space charge. We solve above equation in 
linear approximation for each element of storage ring 
magnetic lattice including only transverse components of 
magnetic field, neglecting the end field effects and 
applying linear optics technique (matrix formalism). To 
go forward we need also explicit expressions for bunch 
space charge forces. We dealt with this in next section. 
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SPACE CHARGE FORCES 
In calculation of space charge forces for simplicity we 
have made the following assumption about the particle 
distribution of the bunch: 

a) elliptical cross sectional bunch with the uniform 
charge distribution within the bunch where space 
charge forces varies linearly with the transverse 
coordinates. 

b) we consider the quasi-monochromatic beam with 
small momentum spread  1<<δ .

Figure 1. Schematic layout of tilted bunch. 

Taking into account above assumptions, the space charge 
forces expressions [2] in the rest coordinate system of the 
tilted bunch can be transformed into the natural 
coordinate frame resulting to the following expressions:  

zxzFyxyFxxxFsxF ⋅−⋅−⋅=,

zyzFyyyFxyxFsyF ⋅+⋅+⋅−=,                                (3)
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where the space charge integrals are given by: 
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with N  the particle population per bunch, a and b the 
bunch ellipse half axes in horizontal and vertical planes 

(for normal oriented bunch) respectively, bl the bunch 

length, γ  the relativistic Lorenz factor and 

mFF /
12

1085.8
−⋅=ε  the Faraday’s constant. The 

3,2,1 ΘΘΘ  are angles between coordinate axis and the 

bunch symmetry axis projections onto the 
)();( zyyx −− and )( xz − planes, respectively.  They 

can be calculated via the ellipse characteristic parameters. 
For example, in the transverse plane one has [2] 
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 where the ellipse parameters are defined by the particle 
state vector components calculated for the given 
longitudinal position of the bunch. In order to approach 
self-consistent description of bunch motion within the any 
lattice element one can use slicing method, i.e. dividing 
the magnetic element to reasonable number of parts and 
then apply matrix manipulation technique. 

ANALITICAL SOLUTIONS 
 We solve system of trajectory equations (2) in linear 
approximation after substitution of self-force expressions 
(3)-(4) and external magnetic field expressions in hard 
edge approximation. The obtained linear system of six 
first order differential equations we bring to the form of 
one differential equation of sixth order. Due to the fact 
that in this equation appears only the terms of even order, 
one can find the exact solution by searching it in the 
exponential form and then solving the corresponding 
algebraic equation. To save paper space we omit here the 
detailed mathematical manipulations and give the final 
result only for the first element of combined function 
bending magnet transfer matrix: 
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 For verification of obtained analytical solutions we have 
checked it against single particle theory in the limit of 
zero particle population within the bunch. We have also 
re-calculated all optical parameters in this limit and found 
the consistency of analytical approach.  

NUMERICAL RESULTS 
Above approach was applied to beam dynamics study in 
the CANDLE storage ring, the main parameters of which 
are presented in the Table 1.  

Table 1: CANDLE main parameters list. 
Parameter Value 
Energy E (GeV) 3 
Circumference (m) 216 
Current I  (mA) 350 
RF frequency (MHz) 499.654 
Harmonic number 360 
Number of super-periods 16 
Straight section length (m) 4.8 
Lattice type DBA 
Bending radius ρ  (m) 7.385 

As show simulation results (see Fig. 2), more severe are 
limits to the particle population imposed by difference 
resonance of second order at the value of particle number 

per bunch 11
1072.2 ⋅=bN .

         

Fig.2. CANDLE tune dependence of particle population 
within the bunch. 

As it was expected the space charge forces are stronger 
for vertical degree of freedom of particle motion. 
However, this limit on particle population per bunch is in 
two orders higher than the CANDLE design bunch 
population 0.56x1010.
  In the Fig.3 is shown the evolution of the transverse 
beam tilt angle (ignoring synchro-betatron coupling) in 
one lattice superperiod. As an initial tilt angle was taken 
1mrad that approximately corresponds to the coupling 
value of one percent.  

Fig .3. Bunch tilt angle variation within one superperiod. 

Fig.4.  Beta beating of vertical oscillations due to space 
charge defocusing effect (dashed line - single particle 
motion, solid line – with the space charge). 

  Fig. 4 shows the beta-beating effect of space charge 
defocusing forces on the vertical oscillations. 

CONCLUSION 
   Development of the computer code based on exact 
analytical solutions for the transfer matrices for the study 
of six dimensional fully coupled space charge dominated 
beam motion is under the progress. We hope after the 
completion of programme improvement to carry out 
detailed investigation of space charge dominated tilted 
beam induced various effects in circular accelerators and 
storage rings.  
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