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Abstract

The small gap undulator vacuum chamber resistive
impedance is studied. The vacuum chamber is considered
as a two-layer cylindrical tube with finite wall thickness.
An analytical form of longitudinal impedanceis obtained.
The study includes both the thin and thick layer cases.

INTRODUCTION

The small gap undulators became an integrated part of
advance synchrotron light sources. Therefore, its
contribution to the broadband impedance of thering isan
important part to study the single bunch instahility.

In this report, the longitudinal resistive impedance of
two-layer pipe is studied that is modelling the small gap
undulator impedance effect. The small gap undulator
vacuum chamber inner surface is usually covered by thin
film of specia material with comparatively small
conductivity (NEG) to provide high vacuum or with high
conductivity (comparable with the main tube material) to
reduce the resistive impedance of small aperture pipe.
Vacuum chamber impedance is strongly depends on the
cover material properties and thickness. The knowledge
of the exact impedance induced by small gap indulator
will allow to optimise the design of the chamber to obtain
the required vacuum and to evaluate the real impedance
of the ring. In Ref. [1] (see aso citation there) a general
algorithm to evaluate the coupling impedance of a plain
uniform disk-like beam in a multi-layer, cylindrical
vacuum chamber is given. The modification of this
algorithm leads us to obtain the exact analytical
expression for two-layer tube impedance.

THE PROBLEM

Consider the disk-like plain charge ( (disk radius@,)
moving with velocity V along the uniform multi-layer
cylindrical tube of inner radius a,. The disk centre
coincides with the tube axis. The boundary between two
layers is located at I =@, and the outer radius of the
tube is @, (Fig.1). Outside of the tube is a vacuum. The
cross section of the tube is then divided into the five
concentric regions: 1) O0<r<a;,2) a,<r<a,, 3
a<r<a, 4 a<r<a, and 5 r=a,. The
frequency domain wave equation for longitudinal
electrical component E, in each region can bewritten as:

1d( dE o= ixt~

S r—=2 |- y’E! =—24L 5, i=12,5. 1)

rdr{ erz' ‘ kgip'l
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where p,, =0 and p,=q/cm’e™is a charge
density; in vacuum regions &,,5 =&, is a vacuum
dielectric constant, in metallic layers £, =€, — j 0,/ @,
(i=34) with o, - the
conductivity, « is the frequency, ); are the radia

corresponding metal

propagation constants. In vacuum regions (i =1,2,5) the
radial  propagation constants are given by
X125 =K/y=7 where y is a Lorenz factor and

k=a)/v. In metallic layers the radial propagation
constants are defined by the positive real part of

X, =\/k2/72+ju0(5iu)- @

Figure 1. Geometry of the problem

SOLUTION

The tangential eectrical field components may be
presented in terms of the first and second order modified

Bessel functions |, K, . The longitudinal electrical field
component in the beam region 1 isthen read as:
Eil)(r): Fllo(zr)+G1 ©)
with G, = jp/ke, .

In the subsequent regions 2,3,4 we have:
E{'=FR(r)+Gs(r) i=234 @
where

R(I’)z Ko(Ziai)Jo(/ﬁr)_Jo(Ziai)Ko(ﬁr) ®)
S (r): _Kl(Ziai )‘]o(lir)_ Jl(Ziai )Ko(;t’ir)

In the outer region (i = 5) the field component is given

by:
E, = F.K,(r) (6)
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The coefficients F,, 1=1..5 and G,, i1 =234 are

defined by the matching conditions at transition
boundaries between two regions.

{ Eg)(l'iai ): Egﬂ)(liai )
HS)(Ziai ): Hgﬂ)(li a ),
where tangential magnetic field components H éi) are
defined by tangentia dectrical field components as
0! jaE, BES)(r)
Hy(r)="——2"~
Z or
Matching conditions (7) consist of four pairs of equations.
This system (7) can be solved consecutively: thefirst pair

of equations that contains unknown parameter F, is
solved with respect to F, and G,. Substituting these
coefficients into the next pair of equation, the coefficients
F; and G; are obtained aslinear parametric expressions

i=1234 ()

(8)

with respect to parameters F and so on. The last pair of
equations is now the system of linear equations with
respect to unknown parametersF, and F;. In particular,
the solution for the coefficient F in ultra-relativistic case
(v=c, 7 — 0)isgiven by:

F = _Gl + Gla12U . )
where

a
U=a2-2%2%y (10)

X3€o
with
V= 53;54R4(a3)83(a2)—54;53R§(a2 )Ra,t(as) .
83}(4R4(a3)53(az)_54/1’3R3(a2)R;(ae)

In above expression

R’(I’): Ko(Zi & )Jl(li r)+ Jo(Zi & )Kl(Zir)
S(r)=-K,(xa)d,(xr)+ 3, (ra K, (xr)

The longitudinal eectrical fidd component in the beam
region 0<r < @, isthen presented as:

EX(r)=(-G,+Galu i)+ G,

that for ultrarelativistic case (7 — 0, () —1) is
modified to:

EV(r)=Galut=quje ! /cake, (11)
Expression (11) is independent from @ and therefore is

valid for the point like charge. The monaopol e longitudinal
impedance is then:

Z(k)=—jz,u™/nk

(12)

with Z, =120m € theimpedance of free space.

SPECIAL CASES
For the tube with finite wall thickness without cover
a, = a, theexpression for U simplified to

U= a§ _ 2& EAR;(aS) )
& ZiRy(as)
For the tube with infinite wall thickness (@, — <o) and
without cover we get
e, (a;)
(6. e 1ay)
where H((ﬂ(vb) are the Hankel functions of the first

order and V = ./— jl,0,® is the radia propagation
constant.

An expression (14) isthemost general form of theinfinite
resistive tube impedance, obtained by Chao [2].

In the case of thick (d =a,—a, << a,) cover with

(13)

(14

U=a’-2a, %

low conductivity (0'3 << 0'4)one can write:

5 1_&4_&
ac, oy, 8 o 3 |,
2

Xa€o | Oy a3i+(l+])\/;g
3 3

2

U=al+2 (19

where s, = (2caZe, /o, |'* isacharacteristic distance for

the thin part of the tube and & = kS, isadimensionless
wave-number.

NUMERICAL EXAMPLES

The numerical calculations of two-layer tube
impedance for the different thickness of cover are shown
on Fig.2. The cover (NEG) material conductivity
0,=55-10°Q™*m™ is negligibly small with respect to
the main tube copper conductivity o, =5.88-10"Q "m™.
Tube inner and outer radii are equal to a, =1.85mm and
a, =2mm correspondingly. The solid curves on the
picture show the infinite thickness homogeneous tube
impedances with wall material conductivity o, (Ieft) and
o, (right); the inner radius is a,. The dashed curves

present the impedance dependence from the thickness of
the cover. There are 6 dashed curves on the graphic that

correspond to the cover thickness of 10, 2, 1um and
100, 10 and 1 nm.
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Figure 2. Real part of two-layer (copper-NEG) tube
impedance versus cover thickness, ¢, < g,

As it follows from the Fig. 2, the two-layer tube
impedance curve is intermediate between two limited
infinite thickness tube impedances. In discussed case of
cover low conductivity the low-frequency part of
impedance tends to cover materia tube impedance, and
the high frequency part tends to the main tube material
impedance. The resonant frequency of the impedance is
shifted to the high frequencies for the thinner cover and
reaches the main tube material impedance for the very
thin cover.

Fig.3 presents the impedance of the stainless-sted (SS)
tube (6,=014-10'Q'm?) with the copper
(0,=588-10Q'm*) cover. Here we have an inverse

effect: with the cover depth decreasing the resonant
frequency is shifted from the copper tube impedance
resonance to the stainless-steel resonance.
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Figure 3. Real part of two-layer (SS-copper) tube
impedance versus cover thickness, ¢, > o,
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Figure 4. Impedance dependence versus wall thickness

The main conclusion is. the two-layer tube impedance is
equal to impedance of tube from the layer material at
frequency region where the skin depth ismuch larger than
cover thickness and coincides with the main tube material
impedance for the frequencies at which the skin depth of
the cover is much less than the cover thickness. In the
intermediate region, when there is essential difference
between two materials conductivities, the impedance
growth at the shifted resonance frequency is observed.

On the Fig.4 the dependence of the impedance of the
stainless-stedl tube from the wall thickness is presented.
Inner wall radius is equal to 1.85mm, as before. Outer
radius varies from 50um up to 50nm. Dashed curveisthe
real part of impedance of stainless-steel tube with infinity
wall thickness. As it fallows from the figure, the finite
thickness of the tube up to the 50 LM does not affect the

tube impedance. Further decreasing of thickness resultsto
total impedance decreasing.

CONCLUSION

The impedance for the two-layer tube with finite wall
thickness is obtained. The result is an exact analytical
solution for the ultra-reativistic case, applicable for any
two-layer tube with arbitrary material and thickness. The
formula generalized Chao’ s formulafor the homogeneous
tube with infinitewall thickness. The numerical examples
for different two-layer tubes are given.
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