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Abstract

A practical obstacle for stochastic cooling in high-
energy colliders like RHIC is the large amount of power
needed for the cooling system. Based on the coasting-
beam Fokker-Planck (F-P) equation, we analytically de-
rived the optimum cooling rate and amplifier power for a
beam of uniform energy distribution and a system of linear
gain function. The results indicate that the usual back-of-
envelope formulae over-estimate the cooling power by a
factor of the mixing factor M . A longitudinal and trans-
verse stochastic cooling system of 4 – 8 GHz frequency
bandwidth in RHIC can effectively counteract intra-beam
scattering (IBS), preventing longitudinal beam debunching,
balancing transverse emittance growth, and improving lu-
minosity.

INTRODUCTION
Stochastic cooling [1, 2] has long been recognized as

a viable approach to counteract the emittance growth and
beam loss caused by intra-beam scattering in RHIC [3, 4].
Theoretically, with a transverse cooling system of fre-
quency bandwidth from 4 to 8 GHz, the (normalized 95%)
emittance of a gold beam of 109 particles per bunch can be
preserved at 30 πµm. With a longitudinal cooling system
of the same frequency bandwidth, the debunching caused
by the particles escaping from the RF bucket can be elim-
inated [5]. Over a 10-hour store, stochastic cooling can
significantly increase the luminosity and reduce the exper-
imental background.

A possible technical difficulty is the existence of very
strong coherent components at GHz frequency range that
would saturate the electronics of the cooling system and
swamp the true stochastic information. Due to this prob-
lem, attempts at implementing bunched-beam stochastic
cooling at the Tevatron and the SPS were unsuccessful. On
the other hand, cooling of the heavy ion beam in RHIC
has the advantage that the signal-to-noise ratio is high due
to the high charge state, and that longitudinally the beam
occupies a large fraction of the RF bucket approaching
coasting-beam cooling conditions. Furthermore, the strong
IBS diffusion in the gold beam is expected to break-down
soliton-like coherent structure in the bunched beam [6].
According to the recent measurements of Schottky signals,
stochastic cooling of the gold beam in RHIC would not
be impeded by the anomalous coherent components in the
GHz-range Schottky signals [7, 8].

Practically, the obstacle for stochastic cooling in RHIC is
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the large amount of amplifier power needed for the cooling
system [3]. Early study using the bunched-beam Fokker-
Planck approach indicated that the power needed is propor-
tional to the energy spread of the beam to the forth power
[4]. With a total kicker coupling-resistance of 6.4 kΩ, the
power needed for longitudinal cooling at beam storage is
several kilo Watts at a frequency from 4 to 8 GHz. How-
ever, a comparison between this Fokker-Planck calculation
[4] and the estimate given in Ref. [3] indicates a differ-
ence in the scaling behavior of the cooling power when the
mixing factor [2] is larger than unity. According to the es-
timate, the power needed for stochastic cooling in RHIC
would be much larger.

This paper presents analytically derived scaling laws for
the longitudinal and transverse cooling power, and dis-
cusses applications in RHIC.

LONGITUDINAL F-P EQUATION
Assume that the evolution of the beam distribution is

slow during a synchrotron-oscillation period. The evolu-
tion of the longitudinal density function ΨL(W ) can be
described by the Fokker-Planck equation [9, 10, 2]
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where W ≡ ∆E/ωs is the scaled energy deviation, and
ωs is the revolution frequency. Neglect the thermal noise
which is small compared with the Schottky noise for heavy-
ion beams. The drifting and diffusion coefficients are
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where φ0
i is the initial phase of the particle, θK and θP

are the azimuthal angles along the ring, the superscripts K
and P indicate the kicker and pick-up, the subscript i indi-
cates the test particle, and GL(ω) is the gain function. With

randomized initial phases and the factor e−im(θP−θK) ab-
sorbed by the gain function, Eq. 3 becomes

FL =
z2e2ωi

4π2

∞∑
m=−∞

GL(mωi)e−im(θP−θK)∆ωi
ωs

DL =
z4e4ω2

i

8π3

N∑
j=1

∞∑
m=−∞

∞∑
n=−∞

|GL(mωj)|2

|m| ρ(ωj)|ωj=
n
m ωi

(6)

where the factor e−im(θP−θK)∆ωi
ωs represents the “bad

mixing” between the pick-up and the kicker, and the sum-
mation is over the effective frequency range of the cooling
system. The average power required for cooling is
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where nK is the number of kicker, and RK is the coupling
resistance of each kicker.

TRANSVERSE F-P EQUATION
Evolution of the transverse density function ΨT (I) is de-

scribed by the Fokker-Planck equation [9, 10, 2]
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where I is the transverse action, and
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Here, φβ is the betatron phase, and βP
x and βK

x are the
betatron functions. Assume that the gain GT is the same
at the upper and lower betatron sidebands, and merge the

factor e−i(m±Qx)(θP−θK) into the gain function, we have
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where Qx is the transverse tune, e−i(m±Qx)(θP−θK)∆ωi
ωs

represents the “bad mixing” between the pick-up and the
kicker, and sin

[
Qx(θP − θK)

]
indicates that a betatron

phase advance of π/2 between the pick-up and the kicker
optimizes the performance. The average power required
for cooling is
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where nK is the number of kicker, RK and LK are the
coupling resistance and length of each kicker, respectively,
2∆K

x is the kicker gap size, and Es = Am0c
2γ is the syn-

chronous energy.

COOLING RATE AND POWER

Longitudinally, the cooling rate for the average beam en-
ergy spread 〈W 〉 = 2
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Assume a linear gain function “notched” at multiples of the
revolution frequency,

GL(mωi) = gmW, ∆ωi = − ηω2
s

Esγ2
W

where ∆ωi = ωi − ωs, and η is the momentum slip factor.
Denote the effective frequency range of cooling from n 1ωs

to n2ωs, ∆n = n2 − n1, and n̄ =
n1 + n2

2
. Consider

the case that the Schottky bands are non-overlapping, i.e.,
M > 1, and the energy distribution is uniform,
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2∆ωs
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where N is the number of particle, and ∆ωs is the fre-
quency spread. Neglecting the effect of “bad mixing”, the
maximum cooling rate that corresponds to the minimum
cooling time τmin is obtained from Eq. 15 as

τ−1
L,min ≈ − ∆nωs

2πNM
(17)
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The mixing factor M is given by

M =
1
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=

1√
3n̄|η|σp

, for M > 1 (18)

where σp is the rms spread in momentum ∆p/p. The av-
erage power needed for the optimum longitudinal cooling
is
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where fs = ωs/2π is the revolution frequency.
Transversely, the cooling rate for the average beam ac-

tion 〈I〉 =
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Assume a constant gain function at the betatron sidebands
of the multiple revolution frequency, GT [(m±Qx)ωs] = g.
The maximum cooling rate for the transverse action (emit-
tance) is obtained as
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The average power needed for the optimum transverse
cooling is
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where 〈εx〉 = 2〈I〉 is the unnormalized average emittance.

RHIC EXAMPLE

Consider longitudinal and transverse stochastic cooling
of a gold beam at RHIC storage. As shown in Table 1,
the beam grows under intra-beam scattering during a typ-
ical 10-hour store [11]. Due to the growth in momentum
spread, the mixing factor M varies from 9.4 to 5.6. The op-
timum cooling time varies from 8.7 to 3.2 hours for the mo-
mentum spread, and from 4.4 to 1.6 hours for the transverse
emittance. With 128 units of kickers, each at 50 Ω cou-
pling resistance, the average power for longitudinal cooling
varies from 0.15 kW to 2.0 kW. Again with 128 units of
50 Ω kickers, each of effective length 1 cm and gap height
(2∆K

x ) 4 cm at locations of βK
x = 20 m, the average power

for transverse cooling varies from 10 W to 114 W.

DISCUSSIONS AND SUMMARY

Based on the coasting-beam Fokker-Planck equation,
we analytically derived the optimum cooling rate and re-
quired power for the longitudinal and transverse stochas-
tic cooling. The results indicate that the usual back-of-
envelope formulae [3] over-estimated the cooling power by
a factor of the mixing factor M in both cases. On the
other hand, the scaling laws derived from the coasting-
beam Fokker-Planck approach agree with those derived

Table 1: Parameter example for stochastic cooling of a gold
beam at RHIC storage.
Machine circumference 3833 m
Mass number, A 197
Change state, Z 79
Energy per nucleon, Es/A 100 GeV/u
Revolution frequency, fs = ωs/2π 78 kHz
Bunch intensity 1 109

Beam storage time 10 hour
Momentum slip factor, |η| 1.9 10−3

RF voltage 6 MV
RF harmonic, h 2520
Bunch length rms (begin - end) 0.11 - 0.19 m
Bunch length rms (begin - end) 27◦ - 45◦

Bunching factor (begin - end) 0.19 - 0.31
Eff. bunch intensity (begin - end) 1.33 - 0.81 10 13

Momentum spread rms (begin - end) 0.44 - 0.71 10−3

Transverse norm. 95% emittance 15 - 40 µm
Cooling bandwidth 4 - 8 GHz
Mixing factor, M (begin - end) 9.4 - 5.6
Momentum cooling time 8.7 - 3.2 hour
Emittance cooling time 4.4 - 1.6 hour

from the bunched-beam Fokker-Planck approach [4] if the
peak beam intensity is used as the effective coasting-beam
intensity. Although we have ignored signal suppression for
the entire discussion, the conclusion holds.

A longitudinal stochastic cooling in RHIC with 4 –
8 GHz bandwidth can effectively counteract IBS-induced
longitudinal beam growth, reducing the experimental back-
ground resulting from the residual beam that escaped the
RF bucket and debunched around the ring. Combining with
a transverse stochastic cooling of the same frequency band-
width to contain the growth of the transverse emittance, we
expect a significant increase in the average luminosity dur-
ing a 10-hour store.
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