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Abstract 
A sufficiently large acceptance is critical for the NLC 
Main Damping Rings (MDR) as the high power carried 
by the beams demands very high injection efficiency.  
Chromatic sextupoles and wiggler insertions (needed for 
rapid damping) are substantial sources of nonlinearities 
limiting the dynamic aperture.  We report on the 
techniques we are using for analysis of single-particle 
beam dynamics in the presence of wiggler fields with 
significant nonlinear components.  We demonstrate that 
our approach gives results in good agreement with 
experimental data when applied to the BL11 wiggler in 
SPEAR2, and discuss the present status of studies for the 
NLC MDR. 

INTRODUCTION 
The Main Damping Rings [1] of the NLC are designed to 
reduce the incoming normalized beam emittances from 
150 µm to 3 µm horizontally and 0.02 µm vertically, in a 
time consistent with the machine repetition rate of 120 
Hz.  The short damping times needed (around 5 ms) are 
achieved in a 300 m lattice by use of over 60 m of wiggler 
with peak field 2.1 T.  The wiggler provides 90% of the 
synchrotron radiation energy loss in the ring.  The high 
average injected beam power of 60 kW means that 
injection efficiency close to 100% must be achieved to 
avoid radiation damage to components of the ring; large 
physical and dynamic apertures are therefore needed. 

Experience at SPEAR2 of a wiggler that led to a 
significant reduction in dynamic aperture [2] motivated 
detailed studies for the NLC MDR.  Studies one year ago 
[3] identified a large dynamic octupole component in the 
MDR wiggler, arising from the interaction between the 
trajectory in the wiggler and the fourth-order roll-off of 
the vertical field with horizontal position.  This leads to a 
large tune-shift with betatron amplitude for particles in 
the ring, and limits the dynamic aperture. 

Recently, a more detailed analysis of the field data from 
the magnetic modeling code used to design the MDR 
wiggler revealed limitations on the numerical quality of 
the field data.  In particular, significant deviations from 
the constraints imposed by Maxwell’s equations were 
found close to the pole faces.  New field data have 
therefore been produced, with tighter limits on the 
numerical quality, and this has led to a significantly 
revised estimate on the size of the dynamic octupole 
component.  This experience has emphasized for us the 
importance of field data of very high quality for 
calculating the beam dynamics in the field of a device 
such as a wiggler. 
 

We have also extended the techniques we are using to 
study the beam dynamics to include use of differential 
algebra (DA) tools for producing a higher-order 
dynamical map for a periodic section of the wiggler.  
Previous studies were based on dynamical maps limited to 
third order. 

In this paper, we first describe the techniques that we 
have developed for producing a dynamical map given a 
numerical magnetic field map for one periodic section of 
a wiggler.  We use the SPEAR2 BL11 wiggler as an 
example, since we are able to validate our analysis against 
experimental data.  We then apply the same techniques to 
the NLC MDR.  The numerical quality of the field data 
for the MDR wiggler still appear not as good as the data 
for the SPEAR2 BL11 wiggler, and it is hoped to address 
this issue in the future.  The results presented here for the 
beam dynamics in the MDR should therefore be regarded 
as preliminary. 

FIELD FITTING 
The first step in our analysis of beam dynamics in a 
wiggler is to fit the numerical field data with an analytic 
series.  This will allow the generation of a dynamical map 
in Taylor form, using a differential algebra code.  
Appropriate expressions (satisfying Maxwell’s equations) 
can be given in either cylindrical polar co-ordinates, or 
rectangular Cartesian co-ordinates.  In cylindrical co-
ordinates, the field components can be written: 
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In Cartesian co-ordinates the components are: 
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The cylindrical representation (1) reflects the periodicity 
in the azimuthal and longitudinal co-ordinates.  In the 
Cartesian representation (2), there is an artificial 
periodicity in the horizontal co-ordinate; nonetheless, it is 
possible by using a small enough value for kx to obtain a 
very good fit to the field in the region of interest for the 
beam dynamics.  The Cartesian representation is more 
convenient for use in beam dynamics codes, including the 
differential algebra codes we shall use to produce the 
dynamical map. 
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In practice, we find the most robust fitting method is to 
identify the coefficients of the cylindrical fit, 

mnα , by a 

two-dimensional Fourier analysis of the radial field 
component on the surface of a cylinder, and then calculate 
the coefficients cmn of the Cartesian fit using the following 
relationship: 
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The coefficients cmn can be found directly by a Fourier 
analysis of the vertical field component on some plane of 
fixed y; however the implicit periodicity of the field 
imposes a lower limit on the value of kx= π/2xmax, where 
xmax is the limit of the range of the numerical field data.  
By making a cylindrical fit, and then using (3) to calculate 
the cmn, we can choose a smaller value of kx and obtain a 
better fit over a wider range. 

As an example, we consider the SPEAR2 BL11 
wiggler.  A model of this device is provided in the 
distribution of the magnet code RADIA [4], and we have 
used this model to generate a numerical field map for one 
periodic section of the wiggler.  As an indication of the 
quality of the field data, Figure 1 shows the divergence 
and curl of the field, calculated from the field data, on a 
plane 6 mm above the mid-plane.  The peak field is 2 T, 
and the period is 175 mm; the full-gap between the upper 
and lower poles is 16 mm.  We observe some deviation 
from zero over a narrow longitudinal region close to the 
edge of the pole, where the vertical field is falling rapidly. 

 

Figure 1:  Field divergence and curl of the SPEAR2 
BL11 wiggler field map, on a plane 6 mm above the 
mid-plane. 

 

Figure 2: Residual of a fit to the SPEAR2 BL11 
wiggler field map. 

We fitted the field by first calculating the cylindrical 
coefficients using a Fourier analysis of the radial 
component of the field on a cylinder of radius 6 mm, 
taking mode numbers up to 9 azimuthally, and 39 
longitudinally.  We then calculated the Cartesian 
coefficients using equation (3), with kx=2π/192 mm-1.   
Figure 2 shows the residual of the fit to the vertical field 
component on the mid-plane, and on a plane 6 mm above 
the mid-plane.  On the mid-plane, the residual is less than 
a Gauss everywhere; close to the field tip, the residual is a 
few tens of Gauss. 

CALCULATING THE DYNAMICAL MAP 
Having obtained a good fit of an analytical expression for 
the field to the numerical field data, a Differential Algebra 
(DA) code can be used to integrate the equations of 
motion in the field to produce a dynamical map in Taylor 
form.  We have used the code COSY [5] for this; other 
differential algebra codes are available.  COSY includes a 
7th order Runge-Kutta integrator that solves the exact 
equations of motion for a relativistic particle in magnetic 
field.  Because the integration is not explicitly symplectic, 
the result is a map that has (small) symplectic errors in 
some of the lower-order terms.  For comparison, we have 
also implemented an explicit symplectic integrator [6] that 
solves Hamilton’s equations with the small-angle 
approximation for the Hamiltonian. 

 

Figure 3:  Coefficients in the 5th order map for x 
through one period of the BL11 wiggler, calculated 
with Runge-Kutta integration (blue points), and an 
explicit symplectic integrator (red crosses).  Green 
lines divide terms of different order. 

Figure 3 compares the coefficients of different terms in 
the map for x from the two integration methods for one 
period of the SPEAR2 BL11 wiggler.  There are small 
differences between the maps, related to the small-angle 
approximation in the explicit symplectic integrator.  Both 
integrators produce maps with small symplectic error. 

TUNE SHIFTS FROM BL11 WIGGLER 
After the BL11 wiggler was installed in SPEAR2, strong 
nonlinear effects were observed.  Measurements were 
made of the tune shift with amplitude [2].  We used an 
interpolated Fourier-Hanning technique to determine 
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numerically the effect of the BL11 wiggler on the 
dynamics in a model of the SPEAR2 lattice, using the 
map produced using COSY.  We found a linear horizontal 
tune shift of –0.010, in excellent agreement with the 
experimental observation of –0.009.  We found a tune 
shift with amplitude of –4.5x10-5 mm-2, smaller than the 
experimentally observed value of –7.4x10-5 mm-2.  
However, studies based on numerical integration through 
a field model produced in TOSCA, also reported in [2] 
underestimated the tune shift by the same amount; it 
appears likely that the discrepancy is due to an error in the 
model of the magnet, rather than in the analysis.  We note 
that the theoretical studies in [2] calculated only the 
dynamic octupole component, equivalent to a single term 
in the map.  The techniques presented above give a 
complete model of the dynamics. 

DYNAMICS IN THE MDR WIGGLER 
The NLC MDR wiggler has a peak field of 2.1 T, a period 
of 270 mm, and a gap of 18 mm.  A field map has been 
produced using TOSCA.  Figure 4 shows the divergence 
and curl of the field, calculated on a horizontal plane 6 
mm above the mid-plane.  The deviation from the ideal 
value of zero has a similar pattern to the SPEAR2 BL11 
wiggler, but is a little larger. 

 

Figure 4: Field divergence and curl of the NLC MDR 
wiggler field map, 6 mm above the mid-plane. 

Figure 5 shows residuals of the fit to the MDR wiggler, 
using the same procedure and same number of modes as 
for the SPEAR2 BL11 wiggler.  The relatively large 
residuals on the mid-plane may be due to deviations from 
the constraints of Maxwell’s equations. 

Finally, Figure 6 shows the dynamic aperture in co-
ordinate space and in tune space for the NLC MDR with a 
linear wiggler model, and with a 5th order map from the 
Runge-Kutta integration through the field in COSY.  The 
colors of the points indicate the diffusion rate in tune 
space on a logarithmic scale.  Particles were tracked for 
512 turns.  At the observation point, the injected rms 
beam size is 0.8 mm horizontally, and 0.25 mm vertically.  
The wiggler has some small impact on the tune shifts, but 
the nonlinear dynamics are dominated by the sextupoles.  
The results need to be confirmed using a more accurate 
field map. 

The off-energy dynamics in the lattice remain a 
concern, with little margin for the 1% full-width energy 
spread on the incoming beam. 

 

Figure 5: Residual of a fit to the NLC MDR wiggler 
field map. 

  

  

Figure 6: Dynamic aperture and frequency map for 
the NLC MDR with linear wiggler model (top) and 5th 
order map for each wiggler period (bottom). 
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