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Abstract

The ESRF injection complex, comprising a 200 MeV
linac, a booster accelerator with a top energy of 6 GeV
and two transfer lines, has been routinely injecting beam
to the storage ring since the beginning of its operation. The
newly implemented injection with “front-end open” trig-
gered several operational improvements in order to max-
imise the reliability of the complex. A series of diagnostics
(synchrotron light monitors, striplines, fast current trans-
formers) were implemented allowing the measurement and
monitoring of several components of the injected beam.
New optics models were constructed and several applica-
tion systems as the closed orbit correction or tune measure-
ments have been upgraded. The operational procedures of
injection at 100MeV in the booster and the injection effi-
ciency maximisation were renewed and improved. Further
developments for the uninterrupted operation of the stor-
age ring during injection, such as the bunch cleaning in the
booster were successfully tested.

INTRODUCTION

The ESRF injection system is composed by a linear pre-
injector and a fast cycling booster synchrotron. The elec-
trons are created in a thermionic cathode built into a triode
gun, accelerated up to 80 KeV and bunched in a buncher
section before entering the linac. They are accelerated up
to about 200 MeV through two 6 m-long accelerating sec-
tions, with a repetition rate of 1 or 10 Hz, depending on
the required storage ring filling pattern. The beam is then
guided through a transfer line (TL1), comprising two 15�

bends, 8 quadrupoles and 14 steerers, and is injected “on-
axis” in the booster, in a single turn, through a septum and
a fast injection kicker. In that stage, the electrons are ac-
celerated by two 5-cell LEP-type cavities to reach 6 GeV
in 50 ms. The booster lattice is based on a FODO structure
with a missing dipole, forming 39 cells with 12 straight
sections and respecting a 3-fold symmetry. All magnets of
the same family are independently powered by a resonant
“white circuit”, cycling at 10 Hz. Chromaticity is corrected
along the cycle by two families of sextupoles whereas the
orbit is only corrected at injection with 78 independently
powered steerers. The high energy beam is extracted from
the booster in two stages by bringing the beam close to a
small pre-septum magnet and firing a fast extraction kicker
which steers the beam into the main septum magnet. The
final injection stage takes place in the second transfer line
TL2 where the beam is transfered through a serie of 5
booster-type dipoles, 14 quadrupoles and 17 steerers and
injected into the storage ring. Some basic design param-

eters of the injection complex can be found in Table [1].
The new injection procedure with open front-ends imposed
the implementation of new diagnostics in order to charac-
terise the beam during the whole injection process. Oper-
ational procedures as the 100MeV injection in the booster
and the TL2 optimisation for maximum injection efficiency
have been reviewed. Finally, new procedures as the bunch
cleaning in the booster are in the final optimisation stage.

Pre-injector
Energy Eext � ��� MeV
Peak current Ip 25 mA - 0.25A
Repetition rate frep 1 - 10 Hz
Pulse duration tpulse 1�s - 2 ns
Emittances at 200MeV �x�y 0.5 - 1 mm rad
Energy spread at 200MeV ��E�E�in 5 �10��

Booster
Circumference C 299.622 m
Extraction Energy Eext 6 GeV
Nominal current Inom 5 mA - 0.1 mA
Harmonic number h 352
Accelerating cycle tcycle 50 ms
Working point �Qx� Qy� ������ ����
Momentum compaction factor �c 9.6 10��

Emittances at 6GeV ��x�ext� �x�ext� (120,3) nm rad
Energy spread at 6GeV ��E�E�ext 1.1 10��

Bunch length ls 2.61 cm (87 ps)

Table 1: Linac and booster parameters. (The two numbers
refer to long-short pulse operation respectively.)

DIAGNOSTICS

Fluorescent screen monitors have been installed on the
injector to measure the position of the beam and its trans-
verse dimensions [2]. Four screens are installed on TL1,
eight are mounted in the booster and eleven screens are lo-
cated in TL2. These screens are mainly used to optimise
the injection and the extraction. Concerning the transverse
beam size measurements, non-destructive and more sensi-
tive diagnostics using synchrotron light have been installed
on three dipoles of the injector: two synchrotron light mon-
itors (SLM) are used on TL1 and one in the booster. The
capabilities of striplines, current transformers and fast cur-
rent transformers have been extended for optimising the in-
jection efficiency between the linac and the booster as well
as the injection from the booster to the storage ring. The
tune monitor and the BPM have also been improved in or-
der to monitor the tune along the cycle and minimise the
closed orbit distortion in the booster.
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EMITTANCE MEASUREMENTS

Assuming a Gaussian beam, the transverse beam emit-
tance at the exit of the linac can be measured using the
first SLM installed on TL1 and applying an upstream
quadrupole strength variation. As shown in figure 1, the
beam coming from the linac is made of several smaller
beam-lets. The existence of multiple beam spots does not
allow determining precisely the transverse emittance at the
exit of the linac. However, by using various settings of
the TL1 quadrupoles, we can estimate that the horizon-
tal and vertical emittances are smaller than 65 nm rad and
70 nm rad, respectively.

Figure 1: Transverse beam spot in TL1.
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Figure 2: Horizontal and vertical tune during the accelera-
tion cycle.

Emittance measurements were also performed in the
booster [3] by using a SLM installed on the 15th dipole
where the optics functions are: �x � ��	
 � ���m, �y �
���� � ���	m and 	x � ����m. These measurements
were obtained for two different tune settings shown in fig-
ure 2, with a current of 4 mA in long pulse. The horizontal
and vertical beam size during the accelerating cycle are de-
picted in figure 3. The dots correspond to the mean values
and the error bars to one standard deviation. From injec-
tion to 10 ms, the beam seems to be unstable as reflected
from the large error bars in the beam size measurements.
Three reasons are suspected to explain this behaviour: a)
an energy error in the injected beam due to linac fluctua-
tions; b) an orbit mismatch between TL1 and the booster;
and c) a collective effect. Figure 4 shows the horizontal and
vertical emittance as a function of time during the energy

ramping. At injection, the beam emittance is quite high in
both planes, but it should reflect the beam instability. The
vertical emittance decreases continuously during the accel-
erating cycle. The horizontal emittance decreases gradu-
ally until 26 ms after the injection, then the quantum fluc-
tuation overtakes the damping and the horizontal emittance
increases. The emittance blow-up at injection remains to
be clearly understood. Measurements with a lower current
will be made in order to check if the instabilities are due to
collective effects. The pulse-to-pulse stability of the linac
and the mis-match between TL1 and booster optics have to
be estimated.
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Figure 3: Horizontal and vertical beam size during the ac-
celerating cycle.
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Figure 4: Horizontal and vertical emittance during the ac-
celerating cycle.

INJECTION AT 100 MEV

The accelerating structures of the 200 MeV linac are
powered by two 3 GHz klystrons. In case of long failure of
one klystron, it is important to be able to inject at 100 MeV
into the booster. This operation mode has been reviewed
and the transfer efficiency optimised [4]. The essential el-
ement for injecting at lower energy is the settings of the
Booster Power Supply System (BPSS). The strategy is to
find optimum AC and DC current values for the dipoles and
quadrupoles which allow injecting at lower energy without
changing the tunes at extraction. The optimisation of BPSS
settings was made in normal injection mode, i.e. 200 MeV,
by increasing the injection time. Then, the second klystron
was switched off to simulate a 100 MeV injection. All the
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nominal current values of magnetic elements of TL1 and
pulsed magnet were divided by two as well as the steerers
of the booster. Then the sextupoles were used to optimise
the current in the booster. Transfer efficiency above 60 %
and a beam of 3.5 mA in the booster has been achieved. A
succesfull test has shown that this injection mode is possi-
ble with the second klystron connected on the first accel-
erating section by using the RF switches on the waveguide
network.

TRANSFER EFFICIENCY
OPTIMISATION

During 2003, the injection efficiency in TL2 was grad-
ually degraded and reached a minimum of 20%. Af-
ter an empirical retuning of a particular quadrupole set-
ting, the efficiency reached 80%. Experimental evidence
showed that the injection efficiency depended strongly on
the booster extraction tunes, probably due to an orbit mis-
match. A more careful scanning of quadrupole and steerer
settings leaded to a maximal injection efficiency, close to
100%. It was first thought that this could be achieved by
a careful adjustment of the angle/displacement of horizon-
tal/vertical steering at the end of TL2, just before the injec-
tion elements. It was evidenced though, that it is crucial for
the beam to be well positioned in the area of TL2 where
the internal aperture of the vacuum chamber was shrinking
from a diameter of 36 mm to a size of 25 mm horizon-
tal � 10 mm vertical. As a result, any optimisation of the
TL2 steering and focusing should have included the proper
vertical positioning of the electron beam on a fluorescent
screen (FS9) just after this aperture drop. At some stage,
the last corrector at the exit of the TL2 (CV9) and before
the septum was found malfunctioning, due to a wrong elec-
trical connection between the poles of the magnet. This
effect may explain to some extent the latest difficulties to
tune TL2. A strategy of TL2 optimisation was finally es-
tablished [5] and the decision was taken to replace the vac-
uum chamber with a circular 36 mm one, so as to move the
aperture limitation at the beginning of the septum.

BUNCH CLEANING

Figure 5: Turn-by-turn position signal from the ESRF
booster at injection.

The bunch cleaning process is essential for the good per-
formance of the few bunch modes in the storage ring, where
a very demanding bunch purity of � ���� is required for
time-domain dependent experiments. An efficient bunch
cleaning system in the booster is necessary for the imple-
mentation of the injection with open front-ends even in
these filling modes. The hardware which has been success-
fully tested during last year [6], includes a stripline shaker
with two electrodes exciting the beam horizontaly at the
betatron resonant frequency with a time selection of the
parasitic bunches which are directed and lost on a scraper.
The procedure has to be done at the beginning of the cycle
(around 5 ms or 300 MeV) due to the limited power of the
stripline amplifier. The chromaticity has to be close to zero
in order to ensure a correct tune tracking for the cleaning
process. On the other hand, at this low energy, the damping
time is very large and the beam may remain excited due to
injection elements mis-match or linac fluctuations, thereby
limiting the cleaning efficiency. The stripline electrodes
can provide an accurate fast position signal for minimis-
ing the transverse oscillations of the injected beam and for
tracking their source. In Fig. 5, the horizontal turn-by-turn
position is shown during the first few ms after injection.
The signal is characterised by long period oscillations as-
sociated to energy mismatch, modulated by transverse os-
cillations due to injection element mis-tuning. These os-
cillations can be eliminated by changing the injection time
and resteering the beam correctly into the booster, thereby
facilitating the bunch cleaning process.

PERSPECTIVES

In the immediate future, the bunch cleaning procedure
has to be fully operational, by tracing the optimal beam
conditions during the booster cycle for efficient cleaning.
This will need the characterisation of beam parameters as
the bunch length during injection, and existing diagnostics
as the streak camera are refurbished for this purpose. The
booster orbit control is being replaced with an application
similar to the one of the storage ring permitting an effi-
cient correction using SVD algorithms. At the same time,
response matrix measurements are being done in order to
refine the booster model and permit the automatic control
of the tune and the chromaticity. A project of emittance
measurements in TL2 is underway in order to establish the
optics model and refine it, for achieving comfortable beam
transfer and maximise the injection efficiency.
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