A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zolotorev, M.S.

Paper Title Page
MOPKF072 Towards Attosecond X-ray Pulses from the FEL 482
 
  • A. Zholents, J.M. Byrd, W. Fawley, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
 
  The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond, soft x-ray pulses precisely synchronized to the pump laser pulse consisted of just few optical cycles. The next frontier is a production of attosecond x-ray pulses at even shorter wavelengths. Here we propose the method of ?seeded attosecond x-ray radiation? where an isolated, attosecond duration, short-wavelength x-ray pulse is radiated by electrons selected by their previous interaction with a few-cycle, intense laser pulse. In principle this method allows excellent synchronization between the attosecond x-ray probe pulse and a pump source that can be the same few-cycle laser pulse or another signal derived from it.  
THPKF078 Coherent Infrared Radiation from the ALS Generated via Femtosecond Laser Modulation of the Electron Beam 2445
 
  • A. Zholents, J.M. Byrd, Z. Hao, M.C. Martin, D. Robin, F. Sannibale, R.W. Schoenlein, M. Venturini, M.S. Zolotorev
    LBNL, Berkeley, California
 
  Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces significant modulation of the electron energies within a short ~100 fs slice of the electron bunch. Subsequent propagation of the energy-modulated bunch around the storage ring results in an appearance of a local temporal modulation of the electron density (micro-bunching) due to the dispersion of electron trajectories. The temporal width of this perturbation evolves as the electron bunch propagates around the ring. The shortest modulation, ~50 microns, appears in the ALS sector immediately following the wiggler magnet, and stretches to ~ 500 microns following propagation over 2/3 of a storage ring orbit. The modulated electron bunch emits single-cycle pulses of temporally and spatially coherent infrared light which are automatically synchronized to the laser pulses. The intensity and spectra of the infrared light were measured in two locations in the ring indicated above and were found to be in good agreement with analytical calculations. Ultra-short pulses of coherent infrared radiation are presently used for a fine tuning the laser ? electron beam interaction for generating femtosecond x-ray pulses.  
THPLT142 A Laser-Based Longitudinal Density Monitor for the Large Hadron Collider 2786
 
  • S. De Santis, J.F. Beche, J.M. Byrd, P. Datte, M. Placidi, V. Riot, R.W. Schoenlein, W.C. Turner, M.S. Zolotorev
    LBNL, Berkeley, California
 
  We report on the development of an instrument for the measurement of the longitudinal beam profile in the Large Hadron Collider. The technique used, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store and display the required information. A 40 MHz laser, phase-locked to the ring radiofrequency system, with a 50 ps pulse length, would be suitable for measuring the dynamics of the core of each of the LHC 2808 bunches in a time span much shorter then the synchrotron period. The same instrument could also monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets ("ghost bunches") as required by the CERN specifications. We also specify the required characteristics of the diagnostic light port in the LHC where our instrument would be installed.

* Presently at Lawrence Livermore National Laboratory.

 
THPLT143 Development of an Abort Gap Monitor for the Large Hadron Collider 2789
 
  • S. De Santis, J.F. Beche, J.M. Byrd, M. Placidi, W.C. Turner, M.S. Zolotorev
    LBNL, Berkeley, California
 
  The Large Hadron Collider, presently under construction at CERN, requires a monitor of the parasitic charge in the 3.3 ?s long gap in the machine fill structure, referred to as the abort gap, which corresponds to the raise time of the abort kickers. Any circulating particle present in the abort gap at the time of the kickers firing is lost inside the ring, rather than in the beam dump, and can potentially damage a number of the LHC components. CERN specifications indicate a linear density of 6x106 protons over a 100 ns interval as the maximum charge safely allowed in the abort gap at 7 TeV. We present a study of an abort gap monitor, based on a photomultiplier with a gated microchannel plate, which would allow for detecting such low charge densities by monitoring the synchrotron radiation emitted in the superconducting undulator dedicated to the measurement of the longitudinal beam properties. We show results of beam test experiments at the Advanced Light Source using an Hamamatsu 5916U MCP-PMT which indicate that such an instrument has the required sensitivity to meet LHC specifications.  
THPKF073 CIRCE, the Coherent InfraRed CEnter at the ALS 2433
 
  • J.M. Byrd, S. De Santis, J.-Y. Jung, M.C. Martin, W.R. McKinney, D.V. Munson, H. Nishimura, D. Robin, F. Sannibale, R.D. Schlueter, M. Venturini, W. Wan, M.S. Zolotorev
    LBNL, Berkeley, California
 
  CIRCE (Coherent InfraRed Center) is a new electron storage ring to be built at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). The ring design is optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. CIRCE operation includes three possible modes: ultra stable CSR, femtosecond laser slicing CSR and broadband SASE. CSR will allow CIRCE to produce an extremely high flux in the terahertz frequency region. The many orders of magnitude increase in the intensity is the basis of our project and enables new kinds of science. The characteristics of CIRCE and of the different modes of operation are described in this paper.