A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zeno, K.

Paper Title Page
MOPLT178 RHIC Pressure Rise 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.  
TUPLT180 Results of the NASA Space Radiation Laboratory Beam Studies Program at BNL 1547
 
  • K.A. Brown, L. Ahrens, R.H. Beuttenmuller, I.-H. Chiang, D.C. Elliott, D. Gassner, Z. Li, I. Marneris, J. Mead, J. Morris, D. Phillips, V. Radeka, A. Rusek, N. Tsoupas, B. Yu, K. Zeno
    BNL, Upton, Long Island, New York
 
  The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. The purpose of the NSRL beam studies program is to develop a clear understanding of the beams delivered to the facility, to fully characterize those beams, and to develop new capabilities in the interest of understanding the radiation environment in space. In this report we will describe the first results from this program.  
TUPLT181 Results of the First Run of the NASA Space Radiation Laboratory at BNL 1550
 
  • K.A. Brown, L. Ahrens, J.M. Brennan, J. DeLong, C. Gardner, D. Gassner, J. Glenn, Y. Kotlyar, I. Marneris, A. Rusek, N. Tsoupas, K. Zeno
    BNL, Upton, Long Island, New York
 
  The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The results of commissioning of this new facility were reported in [*]. In this report we will describe the results of the first run. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. Many modes of operation were explored during the first run, demonstrating all the capabilities designed into the system. Heavy ion intensities from 100 particles per pulse up to 2×109 particles per pulse were delivered to a large variety of experiments, providing a dose range up to 70 G/min over a 5x5 cm2 area. Results presented will include those related to the production of beams that are highly uniform in both the transverse and longitudinal planes of motion [**].

* K.A.Brown, et al, ‘‘Commissioning Results of Slow Extraction of Heavy Ions from the AGS Booster‘‘, Proceedings of the 2003 Particle Accelerator Conference, Portland, OR, 2003** N.Tsoupas, et al, ‘‘Commissioning of the Beam Transfer Line of the Booster Application Facility (BAF) at BNL'', These Proceedings