A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wooldridge, E.

Paper Title Page
MOPKF067 Comparison of Different Buncher Cavity Designs for the 4GLS ERLP 467
 
  • E. Wooldridge, C.D. Beard, C. Gerth
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. Buechner
    FZR/FWFE, Dresden
 
  A DC photocathode gun is part of the injector of the Energy Recovery Linac Prototype (ERLP) currently built at Daresbury Laboratory. A buncher is required for the ERLP to decrease the bunch length off the gun. Three different single-cell cavity designs were investigated: The Cornell buncher, the Elbe Buncher and an EU cavity without Higher Order Mode (HOM) dampers. The properties of these cavities were studied with the computer codes CST's Microwave Studio and ASTRA. The fundamental frequency and field pattern was investigated in Microwave Studio. The EU cavity had to be scaled from 500MHz as the required frequency for the buncher is 1.3GHz. As the anticipated kinetic energy of the electron beam after the gun is about 350keV a particle tracking code including the space charge forces is mandatory to study the effect of the different buncher cavity designs on the beam dynamics. The particle tracking code ASTRA was used to study the performance of the bunchers for a variety of beam parameters. From these investigations it was found that the three bunchers produce very similar effects on the particle bunch.  
TUPKF049 Combining Cavity for RF Power Sources: Computer Simulation and Low Power Model 1060
 
  • E. Wooldridge, S.C. Appleton, B. Todd
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  A combining cavity for RF power sources has been investigated as a way of saving space, in comparison to waveguides, and as a way of combining power with graceful degradation if one or more component were to fail. The cavity has been investigated as the maximum power output of an Inductive Output Tube (IOT) for CW is 80KW at 500MHz and a proposed output of 20KW at 1.3GHz and most RF systems for particle accelerators require much more than this. Although 1.3GHz klystrons do exist they are vastly more expensive to purchase and maintain. Also the down time could be minimised to minutes in the even of a single IOT failure where as a klystron has a minimum downtime of several days in the event of a failure. Initially the cavity and its inputs were simulated in CSTs? Microwave studio. After optimising the cavity to ensure the minimum reflection at the input ports and maximum transmission at the output port, a low power model was then created from aluminium. Signal generators were used to power the model and a network analyser was used to check the output. The model was used to compare the results gained from the computer simulation and to obtain results from asymmetric positioning of the ports, which was not possible in the simulation.