A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wille, K.

Paper Title Page
THPLT020 The DSP-based Betatron Tune Feedback of the Ramped 1.5 GeV Electron Storage Ring BoDo 2508
 
  • B. Keil
    PSI, Villigen
  • K. Wille
    DELTA, Dortmund
 
  The ramped storage ring BoDo is the full energy injector of the 1.5 GeV synchrotron light source DELTA. All ramped booster magnet power supplies, RF power and beam diagnostics of BoDo are handled by a distributed VME-based DSP (digital signal processor) multiprocessing system developed at DELTA. The VME DSP boards of this system are interconnected by DeltaNet, a novel reflective memory ring network. DeltaNet transmits the measurement data from each DSP board to all other boards in real-time via fibre optic links. The generic hardware and software architecture of the system allows the implementation of different kinds of global real-time feedbacks with correction rates in the range from some 100 Hz to some 10 kHz. This paper presents architecture and performance of a real-time betatron tune feedback that was implemented with the DSP system. The betatron tune is measured and corrected in both planes at a rate of typically 700 Hz for arbitrary beam optics and energy ramps of BoDo. In combination with the global Bodo orbit feedback, the tune feedback increases the performance of Bodo both as an injector and as a testbed for machine studies and newly developed accelerator components.  
THPLT021 A DSP-Based Fast Orbit Feedback System for the Synchrotron Light Source DELTA 2511
 
  • B. Keil
    PSI, Villigen
  • K. Wille
    DELTA, Dortmund
 
  A DSP-based Fast Orbit Feedback (FOFB) system has been designed for the synchrotron light facility DELTA. DELTA consists of a 60 MeV linac, the ramped storage ring BoDo as full-energy injector and the 1.5 GeV storage ring Delta. BoDo and Delta have the same dipole, quadrupole and corrector magnet design, the same beam pipe design and the same BPM RF frontends, therefore BoDo was used as a testbed for the newly developed FOFB hardware and software. Using the fast corrector magnet power supplies of BoDo, the FOFB could damp orbit perturbations up to 90 Hz. The envisaged future use of the FOFB for the Delta storage ring will require either the partial or full replacement of the present slow (1 Hz bandwidth) Delta corrector power supplies, or additional fast power supplies with dedicated FOFB corrector magnets. A first test of the FOFB in Delta for local orbit stabilization at one beamline is in preparation. This paper presents the results of a successful test of the FOFB at BoDo, where it achieves a correction rate of 4 kHz for a global SVD-based feedback in both planes. The FOFB is based on the "DeltaDSP" VMEbus DSP boards that are also used for the BoDo betatron tune feedback.  
THPLT038 The Synchrotron Radiation Interferometer using Visble Light at DELTA 2562
 
  • U. Berges, K. Wille
    DELTA, Dortmund
 
  Synchrotron radiation sources such as DELTA, the Dortmund electron accelerator, rely on a monitoring system to measure the beam size and emittance with sufficient resolution. The resolution limits of the different types of optical synchrotron light monitors at DELTA have been investigated. The minimum measurable beam size with the standard synchrotron light monitor using visible light at DELTA is appr. 80 μm. Due to this limitation an interferometer was built up and tested using the same beamline in the visible range. A minimum measurable beam size of appr. 8 μm could be obtained, which gives an increased resolution of one order of magnitude with the new system.  
THPLT039 SVD Based Orbit Correction Incorporating Corrector Limitations at DELTA 2565
 
  • M. Grewe, P. Hartmann, G. Schmidt, K. Wille
    DELTA, Dortmund
 
  Singular Value Decompostion (SVD) of the orbit response matrix has become an invaluable tool for orbit correction at storage rings worldwide. SVD based orbit correction has now been realised at DELTA, a 1.5 GeV electron storage ring. However, due to special orbit demands at DELTA and possibly by magnetic imperfections within the storage ring, we frequently have to face corrector limitations during the process of orbit correction. This work focuses on presenting an analytic algorithm on how to treat these limitations when seeking for an optimal SVD based orbit correction. In contrast to previously published methods, this approach is fairly easy to implement and does not afford an numerical solver. Concepts and results will be presented.  
THPKF017 Status of the Synchrotron Light Source DELTA 2293
 
  • D. Schirmer, U. Berges, J. Friedl, A. Gasper, M. Grewe, P. Hartmann, R.G. Heine, H. Huck, G. Schmidt, C. Sternemann, M. Tolan, T. Weis, C. Westphal, K. Wille
    DELTA, Dortmund
 
  Since 1999, the Dortmunder 1.5 GeV electron storage ring DELTA was continuously extended. The facility serves universities and industries as a source of synchrotron radiation on a regional level. The consolidation of the machine was finally completed in 2002. By now, DELTA, operated for 3000 hours per year, has reached a reliability comparable to other facilities in the world. Large improvements have been made in the installation of the beamlines. At present, two undulator beamlines and several dipole beamlines in the range of soft X-rays are in operation. The 5.3 T superconducting asymmetric wiggler (SAW) serves three beamlines in the hard X-ray regime with circular polarized light. Also the accelerator physics research program has been promoted. The vacuum system was revised during the last year to provide extra space for test sections and additional diagnostics. Substantial progress was achieved by SVD based orbit correction and LOCO based optics modelling as well as detailed CBM studies and a new method for fast tune measurements has been implemented. Future developments for machine improvements, such as DSP-based fast local orbit feedback and a frequent injection mode are in preparation.  
THPKF018 Study for a Frequent Injection Mode at Delta with Beam Shutters Open 2296
 
  • G. Schmidt, M. Benna, U. Berges, J. Friedl, A. Gasper, M. Grewe, P. Hartmann, R.G. Heine, H. Huck, D. Schirmer, S. Strecker, T. Weis, K. Wille, N. Zebralla
    DELTA, Dortmund
 
  The Dortmunder Electron Accelerator (DELTA) is a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h beam time for synchrotron radiation use. The maximum beam current is limited by rf power. To increase the average beam current a frequent injection scheme with beam shutters open is discussed for Delta. The peak current is not enlarged but the number of injections is increased to establish a quasi constant beam current. The quasi constant beam current has in addition the advantage of a constant synchrotron radiation heat-load on vacuum chambers and experiments. First tests at Delta have shown the gain in stability of the closed orbit during frequent injection. This article shows the possibility to install a frequent injection mode with beam shutters open during injection at DELTA. The results of measurements and simulations are presented.