A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wienands, U.

Paper Title Page
MOPLT051 Experimental Characterization of PEP-II Luminosity and Beam-beam Performance 665
 
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • M.A. Baak
    NIKHEF, Amsterdam
  • J. Seeman, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California
 
  The beam-beam performance of the PEP-II B-Factory has been studied by simultaneously measuring the instantaneous luminosity, the horizontal and vertical e+ and e- beam sizes in the two rings, and the spatial extent of the luminous region as extracted from BaBar dilepton data. These quantities, as well as ring tunes, beam lifetimes and other collider parameters are recorded regularly as a function of the two beam currents, both parasitically during routine physics running and in a few dedicated accelerator physics experiments. They are used to quantify, project, and ultimately improve the PEP-II performance in terms of achieved beam-beam parameters, dynamic-beta enhancement, and current-dependence of the specific luminosity.  
MOPLT130 Bunch Pattern with More Bunches in PEP-II 842
 
  • F.-J. Decker, S. Colocho, A. Novokhatski, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California
 
  The number of bunches in the PEP-II B-Factory has increased over the years. The luminosity followed roughly linear that increase or even faster since we also lowered the spot size at the interaction point. The recent steps from 933 in June of 2003 to about 1320 in February 2004 should have been followed by a similar rise in luminosity from 6.5·1033 1/cm2 1/s to 9.2·1033 1/cm2 1/s. This didn't happen so far and a peak luminosity of only 7.3·1033 1/cm2 1/s was achieved. By filling the then partially filled by-3 pattern to a completely filled by-3 pattern (1133 bunches) should even give 7.9·1033 1/cm2 1/s with scaled currents of 1400 mA (HER) and 1900 mA (LER). We are typically running about 1300 mA and 1900 mA with 15% more bunches. The bunch pattern is typically by-2 with trains of 14 bunches out of 18. The parasitic beam crossings or electron cloud effects might play a role in about a 10% luminosity loss. Also the LER x-tune could be pushed further down to the ½ integer in the by-3 pattern. On the other hand we might not push the beam-beam tune shift as hard as in June of 2003 since we started trickle injection and therefore might avoid the highest peak luminosity with a higher background. A mixed pattern with a by2-by3 setup (separation of 2, 3, 2, 3 ?) would give totally filled a slightly higher number of bunches (1360), but near the interaction point there would be only one parasitic crossing per beam lowering the tune shift by two.  
MOPLT141 IR Upgrade Plans for the PEP-II B-Factory 869
 
  • M.K. Sullivan, S. Ecklund, N. Kurita, A. Ringwall, J. Seeman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
  PEP-II, the SLAC, LBNL, LLNL B-factory has achieved a peak luminosity of over 7e33, more than twice the design luminosity, and plans to obtain a luminosity of over 1·1034 in the next year. In order to push the luminosity performance of PEP-II to even higher levels an upgrade to the interaction region is being designed. In the present design, the interaction point is a head-on collision with two strong horizontal dipole magnets (B1) located between 20-70 cm from the IP that bring the beams together and separate the beams after the collision. The first parasitic crossing (PC) is at 63 cm from the IP in the present by2 bunch spacing. The B1 magnets supply all of the beam separation under the present design. Future improvements to PEP-II performance include lowering the beta y * values of both rings. This will increase the beta y value at the PCs which increases the beam-beam effect at these non-colliding crossings. Introducing a horizontal crossing angle at the IP quickly increases the beam separation at the PCs but recent beam-beam studies indicate a significant luminosity reduction occurs when a crossing angle is introduced at the IP. We will discuss these issues and describe the present interaction region upgrade design.  
THPLT160 Measurements of Transverse Coupled-bunch Instabilities in PEP-II 2831
 
  • D. Teytelman, R. Akre, J.D. Fox, S.A. Heifets, A. Krasnykh, D. Van Winkle, U. Wienands
    SLAC, Menlo Park, California
 
  At the design currents the PEP-II High and Low Energy Rings operate above the coupled-bunch instability thresholds in horizontal and vertical planes. Both machines have used analog bunch-by-bunch feedback systems to stabilize the beams since commissioning. Here we present a measurement technique that uses the capabilities of the PEP-II programmable digital longitudinal feedback system to provide transient diagnostics in X or Y directions. This technique allows one to measure instability growth or damping rates as well as oscillation frequencies in both open-loop and closed-loop conditions. Based on these measurements the configuration of the relevant transverse feedback channel can be optimized. The technique will be illustrated with instability measurements and feedback optimization examples. Comparisons of the measured modal patterns and growth rates to the theoretical predictions will be presented.  
THPLT163 High-temperature Kicker Electrodes for High-beam-current Operation of PEP-II 2840
 
  • U. Wienands, R. Akre, D.E. Anderson, S. Debarger, K. Fant, D. Kharakh, R.E. Kirby, A. Krasnykh, A. Kulikov, J. Langton
    SLAC, Menlo Park, California
 
  The strip line electrodes of the kickers used in the transverse bunch-by-bunch feedback systems see significant power deposition by beam and HOM-induced currents. This leads to elevated temperatures of the aluminum electrodes and will ultimately become a limit for the beam current in the Low Energy Ring. Heat is transported to the environment primarily by radiation from the blackened surface of the electrodes. In order to extend the beam-current range of these kickers, new electrodes have been fabricated from molybdenum which are able to run at significantly higher temperature, thus greatly increasing the efficiency of the radiative cooling of the electrodes. Blackening of the electrodes is achieved by oxidation in air at 1000°F using a recipe first applied in aviation research for supersonic aircraft. Emissivity was measured on coupons and a whole electrode to be about 0.6. In addition, the match at the terminations of the electrodes is improved following field calculations and measurements on a model of the kicker.  
MOPLT143 Results and Plans of the PEP-II B-Factory 875
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, M.T.F. Pivi, M.C. Ross, P. Schuh, T.J. Smith, K. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • J.N. Corlett, C. Steier, A. Wolski, M.S. Zisman
    LBNL, Berkeley, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • G. Wormser
    IPN, Orsay
 
  PEP-II is an e+e- B-Factory Collider located at SLAC operating at the Upsilon 4S resonance. PEP-II has delivered, over the past four years, an integrated luminosity to the BaBar detector of over 175 fb-1 and has reached a luminosity over 7.4x1033/cm2/s. Steady progress is being made in reaching higher luminosity. The goal over the next few years is to reach a luminosity of at least 2x1034/cm2/s. The accelerator physics issues being addressed in PEP-II to reach this goal include the electron cloud instability, beam-beam effects, parasitic beam-beam effects, trickle injection, high RF beam loading, lower beta y*, interaction region operation, and coupling control.  
MOPLT144 Design for a 1036 Super-B-factory at PEP-II 878
 
  • J. Seeman, Y. Cai, F.-J. Decker, S. Ecklund, A.S. Fisher, J.D. Fox, S.A. Heifets, A. Novokhatski, M.K. Sullivan, D. Teytelman, U. Wienands
    SLAC, Menlo Park, California
 
  Design studies are underway to arrive at a complete parameter set for a very high luminosity e+e- Super B-Factory (SBF) in the luminosity range approaching 1036/cm2/s. The design is based on a collider in the PEP-II tunnel but with an upgraded RF system (higher frequency), magnets, vacuum system, and interaction region. The accelerator physics issues associated with this design are reviewed as well as the site and power constraints. Near term future studies will be discussed.  
MOPLT146 Trickle-charge: a New Operational Mode for PEP-II 881
 
  • J.L. Turner, S. Colocho, F.-J. Decker, S. Ecklund, A.S. Fisher, R.H. Iverson, C. O'Grady, J. Seeman, M.K. Sullivan, M. Weaver, U. Wienands
    SLAC, Menlo Park, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  In regular top-up-and-coast operation, PEP-II average luminosity is about 70…75% of the peak luminosity due to detector ramp-down and ramp-up times plus the time it takes to top-up both beams. We recently commissioned a new operational mode where the Low Energy Ring is injected continuously without ramping down the detector. The benefits?increased luminosity lifetime and roughly half the number of top-ups per shift?were expected to give an increase in delivered luminosity of about 15% at the same peak luminosity; this was confirmed in test runs. In routine trickle operation, however, it appears that the increase in delivered luminosity is more than twice that due to an increase in availability credited to the more stable operating conditions during trickle operation. In this paper we will present our operational experience as well as some of the diagnostics we use to monitor and maintain tuning of the machine in order to control injection background and protect the detector. Test runs are planned to extend trickle-charge operation to the High Energy Ring as well.