A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Warburton, D.S.

Paper Title Page
TUPLT188 SNS Extraction Kicker Power Supply Manufacture Status 1571
 
  • J.-L. Mi, H. Hahn, R.F. Lambiase, Y.Y. Lee, C. Pai, J. Sandberg, Y. Tan, N. Tsoupas, D.S. Warburton, R. Zapasek, W. Zhang
    BNL, Upton, Long Island, New York
 
  There are fourteen PFN power supplies, which will be installed in the SNS Extraction Kicker System. The Pulse Forming Network (PFN) power supplies for the SNS Extraction kicker were designed by Brookhaven. The basic configuration of the PFN is a lumped element Blumlein pulse forming network (BPFN). The PFN and power supply are fabricated by an industrial company. The first article of. PFN and power supply has been manufactured and tested with a dummy load at the company and onsite with the prototype magnet. The PFN has been tested beyond its specification and has met all requirements including rise time, pulse flatness, amplitude and pulse repetition rate. Additional heat runs are scheduled. The transverse coupling impedance of the kicker system with attached PFN has been measured. This paper will report on the SNS Extraction Kicker Power Supply engineering status, and will include output waveforms, impedance measurements, and production projections.  
WEPKF087 SNS Extraction Fast Kicker Pulsed Power System 1810
 
  • W. Zhang, H. Hahn, J.-L. Mi, C. Pai, J. Sandberg, Y. Tan, N. Tsoupas, J. Tuozzolo, D.S. Warburton, J. Wei
    BNL, Upton, Long Island, New York
  • R. Cutler, K. Rust
    ORNL/SNS, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS) is a next generation high intensity beam facility. Its Accumulator Ring Extraction Fast Kicker System is a very high peak power, high average power, high precision pulse-waveform, ultra-low beam impedance, and high repetition rated pulsed power system. It has been successfully design and developed at Brookhaven National Laboratory. This system will consist of fourteen identical high voltage modulators and fourteen extraction magnet sections located inside of the SNS accumulator ring. The overall system output will reach multiple GW peak power with 60 Pulse-per-second repetition rates. The techniques of reducing impedance, improving rise time, and minimizing ripples will be discussed. The lifetime considerations, issues of the system design, development and construction are presented in this paper.