A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wang, M.-H.

Paper Title Page
WEPLT122 Investigation of Microwave Instability on Electron Storage Ring TLS 2137
 
  • M.-H. Wang
    NSRRC, Hsinchu
  • A. Chao
    SLAC, Menlo Park, California
 
  With the planned installation of a superconducting rf system, the new operation mode of TLS, the electron storage ring at NSRRC, is expected to double the beam intensity. Several accelerator physics topics need to be examined. One of these topics concerns the beam instability of single-bunch longitudinal microwave instability. We consider different approaches to measure the effective broad band impedance. We compare these measurement results with each other and to the old data [*]. The new measurements of effective broad band impedance are higher than the old measurement since between these two sets of measurements several narrow gap insertion devices were installed into the storage ring. We calculate the threshold current of microwave instability with a mode-mixing analysis code written by Dr. K. Oide of KEK [**]. We also develop a multi-particle tracking code to simulate the instability. The results of simulation and measurement are compared and discussed. We conclude that the doubling of beam current will not onset the microwave instability even without a Landau cavity to lengthen the bunch.

* M.H. Wang, et al.,"Longitudinal Beam Instability Observation with streak Camera at SRRC", proceeding of 1996 European Particle Accelerator Conference, pp. 1120** K. Oide, "Longitudinal Single-Bunch Instability in Electron Storage Rings", KEK Preprint 90-10

 
THPKF045 Accelerator Physics Issues at NSRRC 2374
 
  • C.-C. Kuo, H.-P. Chang, P.J. Chou, K.-T. Hsu, G.-H. Luo, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
 
  Over the past decade, NSRRC has served the synchrotron light users with its 1.5 GeV third-generation storage ring. To provide stable hard x-ray for the x-ray community, two strong-field superconduting wigglers have been installed and three more will be put in such a low energy ring. A superconduting rf cavity is to replace the conventional ones and the beam current will be double too. Top-up injection study is underway. This paper presents the accelerator physics issues at NSRRC such as single particle dynamics and collective effects.  
THPKF046 Feasibility Study of Constant Current Operation at TLS Storage Ring 2377
 
  • G.-H. Luo, H.-P. Chang, J. Chen, C.-C. Kuo, K.-B. Liu, R.J. Sheu, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
 
  Several top-up experiments were carried out at various upgrade path of Taiwan Light Source. However, there were too many obstacles laid ahead of various stages to prevent the realization of top-up injection routinely. The small gap undulators, the requirement of small emittance operation and high current operation by SC cavity have promoted the top-up injection project to hightest priority. During last one and half years, a series of beam parameters measurement, subsystem checkout, installing various sensors, control program modification and hardware upgrade made the top-up injection more likely in routine operation. Discussions on the results of some measurements of booster and storage ring, the requirement of hardware upgrade and the future executable plan will be presented in this paper.