A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wang, J.Q.

  
Paper Title Page
WEPLT119 Beam Instabilitiy Studies of BEPC and BEPCII 2128
 
  • J.Q. Wang, Z.Y. Guo, Y.D. Liu, Q. Qin, Z. Zhao, D.M. Zhou
    IHEP Beijing, Beijing
 
  BEPC has been well operated for more then 10 years, and it will be upgraded to a double ring electron positron collider using the existing tunnel, namely BEPCII. This paper describes the recent studies on beam instabilities in BEPC for the improvement of its performance as well as for BEPCII. The instabilities caused by impedance and two-stream effect are investigated. The experimental and simulation results are reported.  
THOBCH01 The Beijing Electron-positron Collider and its Second Phase Construction 230
 
  • C. Zhang, J.Q. Wang
    IHEP Beijing, Beijing
 
  The Beijing Electron-Positron Collider (BEPC) was constructed for both high energy physics and synchrotron radiation researches. As an e+e- collider operating in the tau-charm region and a first synchrotron radiation source in China, the machine has been well operated for 14 years since it was put into operation in 1989. As a collider, the peak luminosity of the BEPC has reached its design goal of 5*1030 cm-2s-1 at J/sai energy of 1.55 GeV and 1*1031 cm-2s-1 at 2 GeV respectively. The main parameters in the dedicated synchrotron radiation operation are: E=2.2~2.5 GeV, ex0=80 mm mrad at 2.2 GeV, Ib=140 mA and the beam lifetime of 20~30 hours. As the second phase project of the BEPC, the BEPCII , has been approved with total budget of 640 million RMB. The construction is started in the beginning of 2004 and is scheduled to complete by the end of 2007. The BEPCII is a double ring machine with its luminosity goal of 1*1033 cm-2s-1 at 1.89 GeV, two orders of magnitude higher than present BEPC. The BEPCII will operate in the beam energy of 1-2.1 GeV so that its physical potential in the whole t and charm range is preserved, while the collider will be optimized at 1.89 GeV. The upgrading of the collider should also provide an improved SR performance with higher beam energy and intensity. The beam currents will be increased to 250 mA at E=2.5 GeV for the dedicated synchrotron radiation operation of the BEPCII. Some key technologies, such as superconducting RF system, low impedance vacuum devices, superconducting micro-beta quadrupoles and etc., has been intensively studied in order to achieve the target of the BEPCII.  
Video of talk
Transparencies