A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wang, D.

Paper Title Page
MOPKF084 Beam Instabilities in Lepton Ring of eRHIC 515
 
  • D. Wang, M. Farkhondeh, C. Tschalaer, J. Van der Laan, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • M. Blaskiewicz, Y. Luo, L. Wang
    BNL, Upton, Long Island, New York
 
  The eRHIC is a high luminosity lepton-hadron collider planned to be built in Brookhaven National Lab, Upton, New York, USA. The lepton machine of eRHIC is a completely newly designed machine complex to provide highly polarized lepton beams at up to 10 GeV energy for the high luminosity lepton-hadron collisions. This paper decribes major issues of collective effects in this lepton storage ring. Besides conventional impedance-driven instabilities, the electron cloud effects in positron operation and fast beam-ion effects in electron operation are of major conserns. The analytical and numerical estimats for major collective effects are made with different machine operation conditions.  
MOPKF085 Design Optimizations of X-ray FEL Facility at MIT 518
 
  • D. Wang, M. Farkhondeh, W. Graves, J. Van der Laan, F. Wang, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • P. Emma
    SLAC, Menlo Park, California
 
  MIT is exploring the construction of a linac-based x-ray laser user facility on the campus of the Bates Linear Accelerator Center. The facility under consideration would span the wavelength range from 100 to 0.3 nm in the fundamental, move into the hard X-ray region in the third harmonic, and preserve the possibility of an upgrade to even shorter wavelengths. The accelerator configuration would include a high brightness electron gun, a superconducting electron linac and multiple undulators and beam lines to support a growing user community. This paper will present the recent progress on the start-to-end simulations including the parameter optimizations and sensativity analysis.  
MOPLT148 Progress of the eRHIC Electron Ring Design 887
 
  • F. Wang, M. Farkhondeh, W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. Van der Laan, D. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • D.P. Barber
    DESY, Hamburg
  • C. Montag, S. Peggs, V. Ptitsyn
    BNL, Upton, Long Island, New York
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
  • J. Shi
    KU, Lawrence, Kansas
 
  Over the past year, a baseline design of the electron ring for the eRHIC hadron-lepton collider has been developed.This site-specific design is based on the understanding of the existing RHIC machine performance and its possible upgrades.The design includes a full energy polarized electron beam injector to ensure operational reliability and to provide high integrated luminosity.The electron ring energy range is 5 to 10 GeV.The electron beam emittance, the electron beam path length and the interaction region optics have to be adjusted over a wide range to match the hadron beam of various species and variable energies.We describe the expected machine perfomance, the interaction region and the lattice design. We also discuss the possible approaches leading to the 1033 cm-2s-1 luminosity for the collisions between 10 GeV polarized electron beam and 250 GeV polarized proton beam.  
MOPLT170 eRHIC, Future Electron-ion Collider at BNL 923
 
  • V. Ptitsyn, L. Ahrens, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande, A.V. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • D.P. Barber
    DESY, Hamburg
  • M. Farkhondeh, W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. Van der Laan, D. Wang, F. Wang, A. Zolfaghari, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
 
  The paper reviews the progress made lately in the design of eRHIC, proposed future electron-ion collider on the basis of the existing RHIC machine. The eRHIC aims to provide collisions of electrons and positrons on ions and protons in center mass energy range of 25-70 GeV. The goal luminosities are in 1032-1033 1/(s*cm2) values for e-p and in 1030-1031 1/(s*cm2) values for e-Au collisions. An essential design requirement is to provide longitudinally polarized beams of electrons and protons (and, possibly lighter ions) at the collision point. The eRHIC ZDR has been recently developed which considers various aspects of the accelerator design. An electron accelerator, which delivers about 0.5A polarized electron beam current in the electron energy range of 5 to 10 GeV, should be constructed at the BNL near existing ion rings of the RHIC collider and should intersect an ion ring at least in one of the available ion ring interaction regions. In order to reach the luminosity goals some upgrades in ion rings also would be required. Ways to reach lower beam emmittances (electron cooling) and higher beam intensities have to be realized.