A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wan, W.

Paper Title Page
MOPKF073 Design Study of the Bending Sections between Harmonic Cascade FEL Stages 485
 
  • W. Wan, J.N. Corlett, W. Fawley, A. Zholents
    LBNL, Berkeley, California
 
  The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.  
MOPKF074 Harmonic Cascade FEL Designs for LUX 488
 
  • G. Penn, J.N. Corlett, W. Fawley, M. Reinsch, W. Wan, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
 
  LUX is a proposed facility for ultrafast X-ray science, based on an electron beam accelerated to GeV energies in a recirculating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 190–250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.  
WEPLT147 Lattice Studies for CIRCE (Coherent InfraRed CEnter) at the ALS 2179
 
  • H. Nishimura, D. Robin, F. Sannibale, W. Wan
    LBNL, Berkeley, California
 
  CIRCE (Coherent InfraRed Center) at the Advanced Light Source is a proposal for a new electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. One of the main requirement for this special mode of operation is the capability of the ring of operating at very small momentum compaction values. In this regime, the longitudinal dynamics becomes strongly nonlinear and an accurate control of the higher order energy dependent terms of the momentum compaction is necessary. The lattice for CIRCE allows controlling these terms up to the third order. The paper describes the lattice and presents the calculated performances in terms of momentum acceptance, dynamic aperture, lifetime and momentum compaction tune capabilities.  
THPKF073 CIRCE, the Coherent InfraRed CEnter at the ALS 2433
 
  • J.M. Byrd, S. De Santis, J.-Y. Jung, M.C. Martin, W.R. McKinney, D.V. Munson, H. Nishimura, D. Robin, F. Sannibale, R.D. Schlueter, M. Venturini, W. Wan, M.S. Zolotorev
    LBNL, Berkeley, California
 
  CIRCE (Coherent InfraRed Center) is a new electron storage ring to be built at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). The ring design is optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. CIRCE operation includes three possible modes: ultra stable CSR, femtosecond laser slicing CSR and broadband SASE. CSR will allow CIRCE to produce an extremely high flux in the terahertz frequency region. The many orders of magnitude increase in the intensity is the basis of our project and enables new kinds of science. The characteristics of CIRCE and of the different modes of operation are described in this paper.  
THPKF075 LUX - A Recirculating Linac-based Facility for Ultrafast X-ray Science 2436
 
  • J.N. Corlett, W.A. Barletta, S. De Santis, L.R. Doolittle, W. Fawley, P.A. Heimann, S.R. Leone, D. Li, S.M. Lidia, G. Penn, A. Ratti, M. Reinsch, R.W. Schoenlein, J.W.  Staples, G.D. Stover, S.P. Virostek, W. Wan, R. Wells, R.B. Wilcox, A. Wolski, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
 
  We present design concepts for LUX - a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac. The source produces high-flux VUV-x-ray pulses with duration of 100 fs or less at a 10 kHz repetition rate, optimized for the study of ultra-fast dynamics across many fields of science. Cascaded harmonic generation in free-electron lasers (FEL's) produces coherent radiation in the VUV-soft x-ray regime, and a specialized technique is used to compress spontaneous emission for ultra-short-pulse photon production in the 1 - 10 keV range. High-brightness electron bunches of 2-3 mm-mrad emittance at 1 nC charge in 30 ps duration are produced in an rf photocathode gun and compressed to 3 ps duration following an injector linac, and recirculated three times through a 1 GeV main linac. In each return path, harmonic cascades are inserted to produce seeded FEL radiation in selected photon energy ranges from approximately 20 eV with a single stage of harmonic generation, to 1 keV with a four-stage cascade. The lattice is designed to minimize emittance growth from effects such as coherent synchrotron radiation (CSR), and to propagate electron beams carrying nm-scale density modulation in the final stages of cascaded harmonic generation. Synchronization of tens of femtoseconds is achieved by use of an optical master oscillator distributing timing signals over actively stabilized fiber, and generation of rf signals from the optical master oscillator. We describe technical developments in key areas including injection from a high repetition rate rf photocathode gun, lattice design, UV and soft x-ray production by high-gain harmonic generation, a kicker design for rapid transfer of the electron beam between radiator beamlines, lasers systems concepts, and synchronization between experimental pump lasers and the x-ray pulse.