A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Vignola, G.

Paper Title Page
THPKF026 An Update on the SESAME Light Source 2320
 
  • D. Einfeld
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • M. Attal, G. Vignola
    SESAME, Amman
 
  During the past three years, the SESAME machine design has been optimised gradually taking into consideration the users demand in the Middle East region. The earlier design concept was to upgrade BESSY I to an energy of 1GeV, now SESAME is a 2.5GeV 3rd generation light source. A recent design review has recommended changing the machine lattice and layout to give greater flexibility for future upgrading and modification, the longest possible beam lines and the longest possible insertion devices, all of that with the limitation of the space available for the machine within the building. By shifting the machine by 6m from the centre of the building (in one direction) it was possible to increase the circumference of the storage ring by 3.6m into 128.4m and beam lines with lengths of 37.7m achieved, while the longest beam line in the old design was only 33.1m, this also increased the total length of the beam lines from 378.2m in the old design into 391.0m. An outline of these optimisations with their influence on the machine output is presented here. Furthermore the beam dynamics, the design of the main components of the storage ring and the first set of beam lines will be discussed.  
THPKF068 An Advanced Light Source Proposed for the South Eastern USA 2418
 
  • V.P. Suller, M.G. Fedurin, J. Hormes
    LSU/CAMD, Baton Rouge, Louisiana
  • D. Einfeld
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • G. Vignola
    SESAME, Amman
 
  At this time CAMD, a 1.3 GeV second generation storage ring, is the only synchrotron radiation facility in the Southeastern USA. To cater for the increasing demand for synchrotron light in this region a study is being made for a new high performance source. In keeping with its role as a regional source, it must be economical to construct and operate yet provide high brightness beams from its Insertion Devices. These will need to span both the soft X-ray region (1-2 keV) and the X-ray region up to at least 13 keV. A high brightness 3rd generation source is described which exhibits a beam emittance less than 10 nm rads at an energy of 2.5 GeV. By using a lattice cell derived from the Theoretical Minimum Emittance type, this performance is achieved in a circumference of only approximately 160 m. The economical, yet flexible, lattice uses vertically focusing gradient in the dipoles. The lattice functions and other parameters are presented of both a 12 cell double bend design and a 10 cell triple bend. The 12 cell gives a horizontal emittance of 8.5 nm rads and the 10 cell 4.6 nm rads. The dynamical stability of both lattices is described together with the beam performance from the anticipated insertion devices. The current status of the proposal is explained.